The Mathematical Model of Radio-measuring Frequency Transducer of Optical Radiation
Based on MOS Transistor Structures with Negative Differential Resistance

A.V. Osadchuk*, I.O. Osadchuk, A.O. Semenov

Vinnytsia National Technical University, 95, Khmelnytske shose St., 21021 Vinnytsia, Ukraine

(Received 21 March 2021; revised manuscript received 09 August 2021; published online 20 August 2021)

The article deals with results of theoretical and experimental studies of a radio-measuring frequency transducer of optical radiation based on MOS transistor structures with negative differential resistance and an active inductive element. Analytical expressions of the transfer function and sensitivity equations are obtained on the basis of the solution of a system of non-linear equations. Experimental studies of the current-voltage dependences of the proposed transistor structure of the frequency converter of optical radiation in static and dynamic modes confirm the presence of a section with negative differential resistance on the I-V characteristic, which compensates for the losses in the oscillatory circuit. The theoretical and experimental dependences of the frequency of generation on the power of optical radiation are presented. The dependence of sensitivity of the developed transducer on the power of optical radiation varies from 9.7 kHz/μW/cm² to 24.5 kHz/μW/cm². A mathematical model of the thermal conditions of a radio-measuring frequency transducer of optical radiation has been developed. The calculation of non-stationary thermal conditions of the frequency transducer allowed to obtain the temperature field of the transducer integrated circuit. The time to achieve the steady state does not exceed 5.8·10⁻¹ s. Moreover, the maximum temperature overheating for the elements of the integrated circuit of the transducer does not exceed 2.49 °C.

Keywords: Mathematical model, Thermal modes, Optical radiation, MOS transistor, Negative resistance.

DOI: 10.21272/jnep.13(4).04001

PACS number: 85.30.Pq

1. INTRODUCTION

In recent years optical microelectronic frequency transducers have been widely used [1-3]. They operate using an oscillator with electronic tuning of a generation frequency in a wide frequency band. Transistor structures having negative differential resistance can be used as primary converters of physical quantities; in this case, their sensitivity and measurement accuracy significantly increased [4-6]. Structurally, they are made in the form of a semiconductor structure consisting of two MOS transistors and an active inductive element based on a MOS transistor which is connected with a phase shifting branch of resistor and capacitor. Furthermore, sensitive elements can be included in the electrical circuit of this structure in accordance with physical quantities, which extends the measurement range of the informative parameter [7-9].

The dependence of the parameters of the MOS transistors on the effect of the informative parameter in the dynamic mode allows the designing of radio-measuring frequency transducers of optical radiation with much better characteristics than similar devices. On the other hand, the use of field-effect transistor structures with negative differential resistance allows to design a self-generating transducer, in which both the capacitance and the inductance based on the field-effect transistors depend on the information parameter, that improves the accuracy and sensitivity of the transducer [10-12].

To study the properties of radio-frequency transducers, it is necessary to develop mathematical models, which we can use for calculating the dependence of the generation frequency on the influence of optical radiation, temperature, supply modes, as well as to carry out experimental studies that confirm the validity of the theoretical principles. This article is devoted to considering these issues.

2. THE RADIO-MEASURING FREQUENCY TRANSUDER OF OPTICAL RADIATION BASED ON MOS TRANSISTOR STRUCTURES

Fig. 1 shows the electrical diagram of the radio-measuring frequency optical radiation transducer based on MOS transistor structures with negative differential resistance.

![Fig. 1 - Electrical diagram of the radio-measuring frequency transducer of optical radiation with an active inductive element](image-url)

The active element on the basis of two MOS transistors (VT1, VT2) has a slope of a static current-voltage curve with negative differential resistance. An operating point position is chosen on a drooping part of the current-voltage curve, using ratings of DC voltage sources. Capacitance of the oscillatory circuit of the self-generator is realized by the capacitive component of the impedance on the drain-drain electrodes of field transistors VT1 and VT2, and the inductance is realized by the inductive component of the impedance on the drain-source electrodes of the transistor VT3. Elec-
trical oscillations appear in a self-oscillatory system. This oscillatory circuit of the self-oscillatory system is made of the capacity component of the transistor structure's complex impedance on the source electrodes of the MOS transistor structure VT1-VT2 and of active inductivity on the basis of the MOS transistor VT3 and the phase-shift circuit R2, C1.

Optical radiation falls on the MOS transistors VT1-VT3. The value of resistors of their channels depends on intensity of an optical flow \(h\nu \). With change of the optical radiation intensity \(h\nu \), the operating point position on the drooping part of the transistor structure current-voltage curve changes. That leads to a change of an equivalent capacity of the oscillatory circuit and to effective generation frequency tuning. A power of oscillations depends on the value of negative differential resistance.

3. THE CALCULATION OF TRANSFER FUNCTION AND EQUATION SENSITIVITY OF A RADIO-MEASURING FREQUENCY OPTICAL RADIATION TRANSDUCER BASED ON MOS TRANSISTOR STRUCTURES WITH NEGATIVE DIFFERENTIAL RESISTANCE

Calculations of the transfer function, which reproduces the dependence of the frequency of generation on the optical radiation power, can be obtained by solving the system of equations according to the converted equivalent circuit (Fig. 2).

Fig. 2 – Equivalent circuit of a radio-measuring transducer

\[
Z_{R1} = R_1, \quad Z_a = R_{G1}, \quad Z_3 = -j/(\alpha C_{GDR})
\]

\[
Z_1 = Z_K, \quad Z_5 = -j/(\alpha C_{BGN}), \quad Z_7 = R_{D1}, \quad Z_8 = R_{S1} + j\omega L_{S1},
\]

\[
Z_{22} = Z_{R2}, \quad Z_{11} = -j/(\alpha C_{D2}), \quad Z_{13} = Z_K,
\]

\[
Z_{15} = -j/(\alpha C_{D2}),
\]

\[
Z_2 = \frac{R_{G2}}{1 + \omega^2 R_{G2}^2 C_{G2}^2} - j \frac{R_{G2}^2 \alpha C_{G2}}{1 + \omega^2 R_{G2}^2 C_{G2}^2}, \quad Z_{16} = R_{P2},
\]

\[
Z_9 = R_{S2} + j\omega L_{S2}, \quad Z_{17} = Z_{R3}, \quad Z_{20} = j/(\alpha C_{D3}),
\]

\[
Z_{20} = Z_K, \quad Z_{21} = -j/(\alpha C_{D3}),
\]

\[
Z_{10} = \frac{R_{G2}}{1 + \omega^2 R_{G2}^2 C_{G2}^2} - j \frac{R_{G2}^2 \alpha C_{G2}}{1 + \omega^2 R_{G2}^2 C_{G2}^2}, \quad Z_{22} = R_{D3},
\]

\[
Z_{14} = \frac{R_{R2}}{1 + \omega^2 R_{R2}^2 C_{R2}^2} - j \frac{R_{R2}^2 \alpha C_{R2}}{1 + \omega^2 R_{R2}^2 C_{R2}^2},
\]

\[
Z_{25} = R_{S3} + j\omega L_{S3}, \quad Z_{22} = R_2,
\]

\[
Z_{18} = \frac{R_{R3}}{1 + \omega^2 R_{R3}^2 C_{R3}^2} - j \frac{R_{R3}^2 \alpha C_{R3}}{1 + \omega^2 R_{R3}^2 C_{R3}^2},
\]

\[
Z_{23} = \frac{R_{R3}}{1 + \omega^2 R_{R3}^2 C_{R3}^2} - j \frac{R_{R3}^2 \alpha C_{R3}}{1 + \omega^2 R_{R3}^2 C_{R3}^2},
\]

The solution of the system of equations based on Kirchhoff's laws was obtained using numerical methods in the software package «Matlab 9.3» [12, 13]. The transfer function is described by the equation:

\[
F_0 = \frac{1}{2} \frac{C_a^2(P)R_0^2(P) + C_b^2(P)R_0^2(P) - A_1 + B_1}{L_{ekv}} \frac{C_a^2(P)R_0^2(P) - A_1 + B_1}{\pi},
\]

where

\[
A_1 = L_{ekv} C_a^2(P) R_0^2(P), \quad B_1 = \sqrt{R_0^2(P) (C_a^2(P) - 1)} C_a^2(P),
\]

\[
L_{ekv} \text{ is the equivalent inductance of the oscillating circuit. The sensitivity of the radio-measuring frequency transducer of optical radiation is estimated based on the expression (1).}
\]

\[
S_p = -\frac{1}{4} \left(2R_0(P) \left(\frac{\partial C_a(P)}{\partial P} \right) B_1 + 2C_a^2(P) \left(\frac{\partial R_0(P)}{\partial P} \right) B_1 + 2C_b^2(P) \left(\frac{\partial R_0(P)}{\partial P} \right) \right)
\]

\[
+ 2L_{ekv} R_0(P) \left(\frac{\partial C_b(P)}{\partial P} \right) B_1 - 2L_{ekv} C_b^2(P) \left(\frac{\partial R_0(P)}{\partial P} \right) B_1 +
\]

\[
+ 2C_b^2(P) \left(\frac{\partial C_a(P)}{\partial P} \right) B_1 + 2R_0^2(P) C_a^2(P) \left(\frac{\partial R_0(P)}{\partial P} \right) +
\]

\[
+ 4R_0^2(P) C_b^2(P) \left(\frac{\partial R_0(P)}{\partial P} \right) + 3R_0^2(P) C_b^2(P) \left(\frac{\partial C_b(P)}{\partial P} \right) +
\]

\[
+ 2R_0^2(P) C_b^2(P) \left(\frac{\partial R_0(P)}{\partial P} \right) + \frac{R_0^2(P)}{C_b^2(P)} \left(\frac{\partial R_0(P)}{\partial P} \right)
\]

The theoretical and experimental dependences of the frequency of generation on the power of optical radiation are shown in Fig. 3. The frequency was measured using an ATTEN F2700C frequency meter. The frequency of generation increased due to decreasing inductance of the oscillating circuit of the self-oscillator, which is related with the photo-generation of non-equilibrium charge carriers both in the channel region and in the region of p-n junctions of the drain and source of the MOS transistors. The dependence of the sensitivity of the transducer on the optical radiation power was calculated according to (2) and varies from 9.7 kHz/μW/cm² to 24.5 kHz/μW/cm² (Fig. 4).
4. THE MATHEMATICAL MODEL OF THERMAL MODES OF RADIO-MEASURING FREQUENCY TRANSDUCERS OF OPTICAL RADIATION BASED ON MOS TRANSISTOR STRUCTURES WITH NEGATIVE DIFFERENTIAL RESISTANCE

The integrated circuit of the radio-measuring frequency transducer of optical radiation consists of a solid-state semiconductor crystal, the atoms of which are connected by elastic forces. Therefore, the thermal vibrations of an atom are transferred to another, and thus elastic waves propagate in all directions of the volume. These waves differ from each other not only in the direction of propagation, but in their length as well: the shortest ones have a length equal to the double of an average distance between adjacent atoms, and the longest ones have a length equal to the length of the crystal. In ideal crystals, atoms are connected to each other by forces F, which are described by Hooke’s law [14]:

$$F = f \frac{x - x_0}{x_0} = f \frac{\Delta x}{x_0},$$

where f is the spring constant, x_0 is the normalized distance between atoms in the quiescent state (i.e., lattice constant), Δx is the change of this distance.

In real crystals, the interaction force of atoms F is determined by means of Δx in an infinite series [15-17]

$$F = -f \frac{\Delta x}{x_0} + g \left(\frac{\Delta x}{x_0}\right)^2 + \ldots,$$

and the larger the change in the distance (amplitude of oscillations) Δx, the greater the weight of the following expansion terms.

Considering thermal fluctuations, it is necessary to take into account the second component in the expansion (3). In addition, its value the greater, the larger the coefficient g, which is called the anharmonicity coefficient, and the greater the amplitude of oscillations (i.e., the higher the temperature).

The presence of this component leads to the following consequences:

- an average distance between atoms in a real crystal increases with increasing temperature, besides, the coefficient of thermal expansion is proportional to the coefficient g;
- atomic fluctuations cease to be strictly harmonious and as a result, they cannot propagate independently, conversely, when they meet, they disperse, i.e., change their motion direction and exchange energy.

There are always defects (impurities, empty sites, atoms in interstitials, dislocations, grain boundaries) in real semiconductor materials, on which elastic waves are also scattered. Therefore, the thermal conductivity of real crystals has a certain value, which depends on the degree to which the above factors (anharmonicity and defects) prevent the propagation of thermal waves.

Electrical modes of operation of frequency measuring transducers significantly affect their parameters. The current flowing through transistors, resistances and other elements of the integrated circuit leads to an increase in temperature due to power dissipation. Analysis of the thermal state of the integrated circuit is a complex task, the solution of which can be made on the basis of mathematical modeling, taking into account the physical processes and design features of the integrated circuit. Using the results of mathematical modeling, it is possible to optimize the parameters of microelectronic transducers [18-20]. In this paper, in contrast to the studies mentioned above, an attempt is made to simulate the thermal mode for radio-measuring frequency transducers of physical quantities [20].

The thermal model of the transducer consists of a thin silicon wafer with certain sizes, in the surface layer of which two complementary MOS transistors and an active inductance based MOS transistor are formed. They are combined using current-carrying tracks into a measuring circuit. MOS transistors heat up when current flows through them, which breaks the thermal mode of the radio-frequency transducer and affects the accuracy of its operation. The thickness of the source, drain, and channels of a MOS transistor is within a few micrometers, and the thickness of the silicon substrate is several hundred micrometers. Assume that the semiconductor substrate has a constant temperature and is an isothermal surface.

The temperature distribution in space and time in the microelectronic circuit of the frequency transducer is described by the heat equation, which has the form [14]:

$$c \rho \frac{\partial T}{\partial t} = F(x, y, z) + \lambda \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2}\right),$$

where c is the specific heat of silicon, and t is the time.
The stationary thermal field in the volume and on the surface of the studied thermal model of the radio-frequency transducer (Fig. 5), based on formula (4), is described by the expression

$$\frac{\partial^2 T(x, y, z)}{\partial x^2} + \frac{\partial^2 T(x, y, z)}{\partial y^2} + \frac{\partial^2 T(x, y, z)}{\partial z^2} = -\frac{1}{\lambda} F(x, y, z),$$

(5)

where $T(x, y, z)$ is the overheating temperature in thermal models with coordinates x, y, z regarding the temperature of the transducer housing.

In equation (5), the function $F(x, y, z)$ determines the power density of heat generation, which depends on the geometric dimensions of the element, the location and power of heat sources

$$F(x, y, z) = \sum_{i=1}^{n} \frac{f_i}{V_i} q_i(x)q_i(y)q_i(z),$$

$$T(x, y, z) = T_0 + \frac{2}{\lambda_0 l_x l_y l_z} \sum_{i=1}^{n} \frac{f_i}{V_i} \left(\gamma_0 \cos \gamma_0 z_i + h \sin \gamma_0 z_i \right) \sin \gamma_0 \delta_i \left(\gamma_0 \cos \gamma_0 z_i + h \sin \gamma_0 z_i \right) + \frac{4}{\lambda_0 l_x l_y l_z} \sum_{i=1}^{n} \frac{1}{m \left(\pi l_x \right)^2 + \gamma_0^2} \times$$

$$\sum_{i=1}^{n} \frac{f_i}{V_i} \cos \frac{m \pi x_i}{l_x} \sin \frac{n \pi y_i}{l_y} \sin \frac{m \pi z_i}{l_z} \left(\gamma_0 \cos \gamma_0 z_i + h \sin \gamma_0 z_i \right) \sin \gamma_0 \delta_i \left(\gamma_0 \cos \gamma_0 z_i + h \sin \gamma_0 z_i \right) + \frac{4}{\lambda_0 l_x l_y l_z} \sum_{i=1}^{n} \frac{1}{m \left(\pi l_x \right)^2 + \gamma_0^2} \times$$

$$\sum_{i=1}^{n} \frac{f_i}{V_i} \cos \frac{m \pi x_i}{l_x} \sin \frac{n \pi y_i}{l_y} \cos \frac{m \pi z_i}{l_z} \left(\gamma_0 \cos \gamma_0 z_i + h \sin \gamma_0 z_i \right) \sin \gamma_0 \delta_i \left(\gamma_0 \cos \gamma_0 z_i + h \sin \gamma_0 z_i \right) + \frac{64}{\lambda_0^2} \sum_{i=1}^{n} \frac{1}{m \left(\pi l_x \right)^2 + \gamma_0^2} \times$$

$$\sum_{i=1}^{n} \frac{f_i}{V_i} \cos \frac{m \pi x_i}{l_x} \sin \frac{n \pi y_i}{l_y} \sin \frac{m \pi z_i}{l_z} \left(\gamma_0 \cos \gamma_0 z_i + h \sin \gamma_0 z_i \right) \sin \gamma_0 \delta_i \left(\gamma_0 \cos \gamma_0 z_i + h \sin \gamma_0 z_i \right) + \frac{64}{\lambda_0^2} \sum_{i=1}^{n} \frac{1}{m \left(\pi l_x \right)^2 + \gamma_0^2} \times$$

In (7), T_0 is the ambient temperature. Expression (7) is a trigonometric series that converges fast, therefore, in its calculations, the number of members of the series is limited by the numbers $N = 2^r$, $M = 2^d$, $K = 2^e$, where r, d, e are the integers that are selected based on the accuracy of calculations. Such selection N, M, K allows to use fast Fourier transforms in temperature calculations. The geometric dimensions of the controlled integrated circuit of the radio-frequency transducer, the values of the thermal conductivity of the material and the heat transfer coefficients from its surface, the number of active elements and the coordinates of their centers are determined from the design of the transducer. To determine the number of unknown heat generation capacities $f_i (i = 1, \ldots, I$, where I is the number of heat sources), discrete temperature values are substituted into the left side of formula (7), while being limited to a finite number of series components on the right side of expression (7). As a result, we obtain a system of linear algebraic equations for unknown heat generation capacities. The temperature on the surface of the active elements of the measuring frequency transducer is determined by the equation.

\[
T(x, y, t) = T_c + \frac{2}{\sqrt{l_1 l_2}} \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{f_{\gamma_0}}{2\pi^2} e^{i\alpha m x / l_x} e^{i\beta n y / l_y} \int T_c(x, y) \sin \frac{n\pi x}{l_x} \sin \frac{m\pi y}{l_y} \, dx \, dy \times
\exp \left(-\frac{\pi^2}{l_x^2} \left(a^2 n^2 + b^2 m^2 \right) \right) \sin \frac{n\pi x}{l_x} \sin \frac{m\pi y}{l_y},
\]

where \(a = c \rho \beta, t \) is the time.

Fig. 7 presents the calculations of the unsteady thermal mode according to (9) of the microelectronic transducer. The time to reach steady state does not exceed \(5.8 \times 10^{-4} \) s. In this case, the maximum temperature of overheating for the elements of the integrated circuit of the transducer does not exceed 2.49 °C. Calculations of the temperature field and transition state are performed in a software environment “Matlab 9.3” [13].

5. CONCLUSIONS

The study of the radio-frequency transducer of optical radiation based on the MOS transistor structure with the active inductive element has been performed and the analytical expressions of the transfer function and sensitivity equations have been obtained based on the solution of the system of non-linear equations. Theoretical and experimental dependences of the frequency of generation on the power of optical radiation are presented. The increase in the frequency of generation is associated with a decrease in the inductance of the oscillating circuit of the self-oscillator, which is due to the photo-generation of nonequilibrium charge carriers in the channel region and also in p-n junctions of the drains and sources of MOS transistors. The dependence of the sensitivity of the transducer on the optical radiation power varies in the range from 9.7 kHz/μW/cm² to 24.5 kHz/μW/cm². The mathematical model of thermal modes of the radio-measuring frequency transducer of optical radiation has been developed. The calculations of the non-stationary thermal mode of the frequency converter have been performed according to these results. The temperature field of the integrated circuit of the transducer has been obtained. The time to reach steady state does not exceed \(5.8 \times 10^{-4} \) s. The maximum temperature of the overheating for the elements of the integrated circuit of the transducer does not exceed 2.49 °C.
Математична модель радіовимірювального частотного перетворювача оптичного випромінювання на основі МДН-транзисторної структури з від’ємним диференційним опором

О.В. Осадчук, Я.О. Осадчук, А.О. Семенов

Вінницький національний технічний університет, Хмельницьке шосе, 95, 21021 Вінниця, Україна

У статті розглядаються результати теоретичних та експериментальних досліджень радіовимірювального частотного перетворювача оптичного випромінювання на основі МДН транзисторної структури з від’ємним диференційним опором та активним індуктивним елементом. Представлено аналітичні вирази функцій перетворення та рівняння чутливості, які отримані на основі розв’язку системи нелінійних рівнянь. Експериментальні дослідження вольт-амперних характеристик запропонованої транзисторної структури частотного перетворювача оптичного випромінювання в статичному та динамічному режимах підтверджують наявність ділянки з від’ємним диференційним опором на ВАХ, який компонується втрати та коливальному колі. Представлені теоретичні та експериментальні залежності частоти генерації від потужності оптичного випромінювання. Залежність чутливості розробленого перетворювача від потужності оптичного випромінювання визначається від 9,7 кВт/мквт·см до 24,5 кВт/мквт·см. Розроблено математичну модель теплових умов радіовимірювального частотного перетворювача оптичного випромінювання. Розрахунки нестационарних теплових умов частотного перетворювача дозволили отримати температурне поле інтегральної схеми пристрою. Час досягнення стійкого стану не перевищує 5,8·10⁻¹ с. Більше того, максимальна температура перегріву для елементів інтегральної схеми перетворювача не перевищує 2,49 °C.

Ключові слова: Математична модель, Теплові режими, Оптичне випромінювання, МДН-транзистор, Від’ємний диференційний опір.

REFERENCES