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Abstract. The present study focuses on a new application of the TOPSIS method for the optimization of machine 

learning algorithms, supervised neural networks (SNN), the quick classifier (QC), and genetic algorithm (GA) for 

proteomic analysis. The main hypotheses are that the change in the weights of alternatives could affect the ranking of 

algorithms. The obtained data confirmed this hypothesis for their ranking. Moreover, adding labor as a cost criterion 

to the list of criteria did not affect this ranking. This was because candidate 3 had better fuzzy membership degrees 

than the two other candidates concerning their criteria. This work showed the importance of the value of the fuzzy 

membership degrees of the cost criterion of the algorithms in their ranks. The values of the fuzzy membership de-

grees of the algorithms used for proteomic analysis could determine their priority according to their score differences. 

One of the advantages of this study was that the studied methods could be compared according to their characteris-

tics. Another advantage was that the obtained results could be related to the new ones after improving these methods. 

The results of this work could be applied in engineering, where the analysis of proteins would be performed with 

these methods. 
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1 Introduction 

The multi-criteria decision-making (MCDM) tech-

niques are essential tools that have found their applica-

tions in diverse fields of science and engineering. Data 

optimization based on predicting the best alternative and 

ranking candidates can be carried out using these algo-

rithms. In recent years, some MCDM algorithms have 

been used to determine the possible optimal alternatives. 

In these methods, linguistic values are used for the as-

sessment of weights of criteria in order to obtain the 

ranks of alternatives [1-3].  

The technique for order of preference by similarity to 

ideal solution (TOPSIS) is an MCDM method which is 

more appropriate than other such techniques in the first 

technique. Profit and cost criteria are analyzed according 

to their difference for the candidates [4-6]. The ad-

vantages of TOPSIS are important in science and engi-

neering, which are the use of application, universality, 

consideration of distances to the ideal solutions and sim-

plicity on computation and presentation [7, 8]. 

Proteomic analysis, which investigates the structure 

and function of proteins, is an important issue in engi-

neering and its related fields. In the proteomic analysis, 

the dysregulated proteins in patients are selected, and the 

protein biomarkers that can influence the metabolisms of 

organs, such as bone, cartilage, liver, etc., are identified 

[9-12]. The proteomic pattern identification of diseases, 

such as different varieties of cancers, for which there are 

no early specific symptoms, is considered a necessary 

investigation as no long survival rate is obtained when 

these diseases are diagnosed in advanced stages [13]. 

TOPSIS has been used previously to analyze proteo-

mic data and predict disease stages or cell expression 

profiles [14, 15]. These investigations use this feature 

ranking approach to select the most discriminative pro-

teins from proteomics data for cancer staging. Moreover, 

introduced proteins are also investigated, which can po-

tentially be applied in medical practice. Lower computa-

tional complexity and more production of general results 

without overfitting are the advantages of the approach 

used in these studies.  

Although different machine learning algorithms such 

as neural network (NN), the quick classifier (QC), and 

genetic algorithm (GA) have been applied for protein 

analysis [16-21], their optimization in a comparative 
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study remains a novel topic to be investigated. To our 

knowledge, algorithms such as supervised neural network 

(SNN), QC and GA have not yet been optimized with 

TOPSIS for proteomic analysis. This novel work will 

provide insight into this method for optimizing these al-

gorithms. 

In this work, we investigated the optimization of three 

algorithms, SNN, QC, and GA, for the proteomic analysis 

with TOPSIS. The novelty of the current work relies on 

the feature ranking of the algorithms and their optimiza-

tion with two series of modifications carried out in our 

analysis. We modified the weight values and the number 

of criteria in separate analyses and used TOPSIS as the 

appropriate optimization method to distinguish the profit 

and cost criteria. To our knowledge, the optimization of 

the algorithms used for proteomic analysis has not been 

investigated with this method. 

The rest of the paper includes the following sections. 

In Section 2, we present the methodology of our paper, 

including information on the classification algorithms 

applied for the proteomic analysis and the TOPSIS meth-

od. In Section 3, we present our results in three series of 

analyses. We discuss the results and conclude the paper 

in Sections 4 and 5, respectively. 

2 Research Methodology 

This research work focused on optimizing classifica-

tion algorithms for proteomic analysis with the TOPSIS 

method. The quantitative approach presented here was 

based on this method's characteristics, which allowed 

analyzing these algorithms according to their characteris-

tic differences. 

Three machine learning algorithms: SNN (candi-

date 1), QC (candidate 2), and GA (candidate 3), were 

analyzed in this work as their characteristics were previ-

ously investigated by Swiatly and her colleagues [13]. 

We used the TOPSIS code in python. The steps of this 

method were presented in our previous work [22]. 

We analyzed three algorithms: SNN (candidate 1), QC 

(candidate 2), and GA (candidate 3). These candidates are 

indicated as C-1, C-2, and C-3, respectively. The terms 

considered for the level of the candidates’ criteria, such 

as recognition capability, cross-validation, sensitivity, 

and specificity, which were all the profit criteria, were as 

follows: very high, medium, high, and high for C-1, high, 

high, high and medium for C-2, and very high, medium, 

very high and medium for C-3, respectively. The terms 

used in the table were chosen according to the values of 

the characteristics of these algorithms, as indicated in 

table 3 of the paper of Swiatly and her colleagues [13]. 

3 Results 

Table 1 shows the triangular fuzzy membership de-

grees of the candidates’ characteristics and their mean 

values. 

The alternative weight value of 0.5 was assigned for 

all the profit criteria: recognition capability, cross-

validation, sensitivity, and specificity. In the criteria ma-

trix, the term “true” was used for the profit criteria. 

Table 1 – Triangular fuzzy membership degrees  

of candidates’ characteristics 

Candi-

dates/ 

Criteria 

Recognition  

capability 

Cross  

validation 
Sensitivity Specificity 

Triangular fuzzy degrees 

C-1 0.8, 0.9, 1.0 0.4, 0.5, 0.6 0.6, 0.7, 0.8 0.6, 0.7, 0.8 

C-2 0.6, 0.7, 0.8 0.6, 0.7, 0.8 0.6, 0.7, 0.8 0.4, 0.5, 0.6 

C-3 0.8, 0.9, 1.0 0.4, 0.5, 0.6 0.8, 0.9, 1.0 0.4, 0.5, 0.6 

Mean values 

C-1 0.9 0.5 0.7 0.7 

C-2 0.7 0.7 0.7 0.5 

C-3 0.9 0.5 0.9 0.5 

 

Table 2 shows the values of the candidates’ distances 

from the best and worst alternative of the candidates, 

their similarity coefficients (CCi), and rankings. 

 
Table 2 – The distances from the best alternative and the worst 

alternative, the similarity coefficients, and the rankings 

Candidates di* di
– CCi Ranking 

C-1 0.063 0.061 0.493 1 

C-2 0.072 0.050 0.413 2 

C-3 0.071 0.051 0.417 3 

 

Figure 1 shows the distances from the best and worst 

alternatives and the similarity coefficients of candidates 

with the black, red, and green lines, respectively. 

 
Figure 1 – The distances from the best alternative and the worst 

alternative and the similarity coefficients of candidates 

 

In the second series of analyses with TOPSIS, we de-

termined how the change in the criteria weights could 

affect the algorithm’s output with the same entry data in 

the evaluation matrix. The alternative weights for each 

criterion are shown in Table 2. The recognition capabil-

ity, cross-validation, sensitivity, and specificity weights 

for all the candidates were 0.9, 0.9, 0.9, and 0.2, respec-

tively. These characteristics were considered as the profit 

criteria. 

Table 3 shows the values of the candidates’ distances 

from the best and worst alternatives of the candidates, 

their similarity coefficients (CCi), and rankings. 

Figure 2 shows the distances from the best and worst 

alternatives and the similarity coefficients of candidates 

with the black, red, and green lines, respectively. 
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Table 3 – The distances from the best alternative and the worst 

alternative, the similarity coefficients, and the rankings 

Candidates di* di
– CCi Ranking 

C-1 0.078 0.045 0.366 3 

C-2 0.065 0.062 0.491 2 

C-3 0.064 0.063 0.497 1 

 
Figure 2 – The distances from the best alternative and the worst 

alternative and the similarity coefficients of candidates 

In the third series of analyses, we added a cost criteri-

on to the entry matrix. Recognition capability, cross-

validation, sensitivity, and specificity were the profit cri-

teria. 

We considered labor as a cost criterion for the candi-

dates. 

The terms considered for the level of the candidates’ 

criteria, such as recognition capability, cross-validation, 

sensitivity, specificity, and labor, were as follows: very 

high, medium, high, medium and height for C-1, high, 

medium, high, medium and very high for C-2, and very 

high, medium, very high, medium and low for C-3, re-

spectively.  

Table 4 shows the triangular fuzzy membership de-

grees of the candidates’ characteristics and their mean 

values. 

The alternative weight values of 0.9, 0.9, 0.9, 0.2, and 

0.5 were assigned for recognition capability, cross-

validation, sensitivity, specificity, and labor, respectively. 

In the criteria matrix, the terms “true” and “false” were 

used for the profit criteria and the cost criterion, respec-

tively. 

Table 4 – Triangular fuzzy membership degrees of candidates’ characteristics 

Candidates/ 

Criteria 

Recognition  

capability 

Cross  

validation 
Sensitivity Specificity Labor 

Triangular fuzzy degrees 

C-1 0.8, 0.9, 1.0 0.4, 0.5, 0.6 0.6, 0.7, 0.8 0.6, 0.7, 0.8 0.6, 0.7, 0.8 

C-2 0.6, 0.7, 0.8 0.6, 0.7, 0.8 0.6, 0.7, 0.8 0.4, 0.5, 0.6 0.8, 0.9, 1.0 

C-3 0.8, 0.9, 1.0 0.4, 0.5, 0.6 0.8, 0.9, 1.0 0.4, 0.5, 0.6 0.1, 0.2, 0.3 

Mean values 

C-1 0.9 0.5 0.7 0.7 0.7 

C-2 0.7 0.7 0.7 0.5 0.9 

C-3 0.9 0.5 0.9 0.5 0.2 

 

Table 5 shows the values of the candidates’' distances 

from the best and worst alternatives of the candidates, 

their similarity coefficients (CCi), and rankings. 

Table 5 – The distances from the best alternative and the worst 

alternative, the similarity coefficients, and the rankings 

Candidates di* di
– CCi Ranking 

C-1 0.092 0.046 0.334 3 

C-2 0.104 0.053 0.337 2 

C-3 0.055 0.104 0.656 1 

 

Figure 3 shows the distances from the best and worst 

alternatives and the similarity coefficients of candidates 

with the black, red, and green lines, respectively. 

 
Figure 3 – The distances from the best alternative and the worst 

alternative and the similarity coefficients of candidates 

3 Discussion 

The comparison of the obtained data in the tables and 

figures presented in this paper revealed that the change in 

the weights of alternatives could affect the ranking of 

algorithms. 

Moreover, the ranking did not change after adding 

labor as a cost criterion to the list of criteria. This was 

because the GA, as candidate 3, had better fuzzy 

membership degrees than the two other candidates 

concerning their criteria, so the GA could be ranked in 

first place. In contrast, this algorithm was ranked in the 

second position before adding labor to the list of criteria. 

This showed the importance of the values of the fuzzy 

membership degrees of the cost criterion of algorithms in 

their ranks. 
The obtained results show how the values of the fuzzy 

membership degrees of the algorithms used for the 

proteomic analysis could determine their priority 

according to their score differences. It is worth noting 

that the improvement of the algorithms SNN 

(candidate 1) and QC (candidate 2) could change the 

ranking when labor was considered as a cost criterion. 

For this purpose, it would be required to increase the 

recognition capability, cross-validation, sensitivity and 

specificity of the first and second candidates and reduce 

their labor. The change in the ranking of these algorithms 
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could add further information for the proteomic analysis. 

This issue will be addressed in a further investigation. 
The future of proteomic analysis depends on 

technological developments to resolve current instrument 

limitations, the integration of biological and protein 

research approaches to investigate the biological sciences 

and molecular medicine, and the development of 

quantitative, tissue-specific proteomes for emphasizing 

low-abundance metabolic proteins, a direct look at an 

evolving disease process and extracting the whole factors 

that are involved in the analysis [23-25]. 

These developments will help recognize a specific 

process error before their potentially incorrect diagnosis 

[26]. The TOPSIS method can be used to predict disease 

stages in each investigation. The presented approach can 

also be used to analyze other materials [27-30]. As 

demonstrated in a series of studies, this approach is 

applicable to the selection of the analysis methods of 

biological materials such as DNA, RNA, etc. [31-33]. 

The same method can be applied to the investigation of 

the effects of their properties on their ranks [34-37]. 
Further investigations are required to improve these 

algorithms for the analysis of proteins, as their sensitivity 

and specificity could be improved for their applications in 

science and engineering. 

5 Conclusions 

This paper investigated the prediction of machine 

learning algorithms for analyzing proteomic patterns with 

TOPSIS. The applied method consists of the calculations 

with the evaluation matrice, including the entry data for 

which the matrices of weight values and criteria were 

considered for different analyses. In the presented work, 

the algorithms previously used for the analysis of proteins 

were analyzed, and their rankings were compared. We 

used vector normalization in the TOPSIS method for the 

data normalization. The results of the two first series of 

the analysis showed that the third candidate could replace 

the first one in the rankings when the criteria weights 

were modified. 

In addition, the third candidate could still maintain the 

first position in the ranking when labor was added as the 

cost criterion to the list of criteria. The obtained results 

showed that the optimization of the ranks could be affect-

ed by modifying the candidates’ weights. 

Optimizing the algorithms can lead to a better under-

standing of proteomic analysis with applications in sci-

ence and engineering. 
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