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1 INTRODUCTION 

The problem of gas flow through porous mediums with application to exploitation of 

fields shows serious difficulties even in the simple case of plane-quaquaversal flow through 

a homogenous and isotropic porous medium. Indeed, even if it accepted that the flowing 

phenomenon is usually isothermal, the pressure differential equation is non-linear and as for 

the gas behaviour both the deviation from the perfect gases low and the viscosity pressure 

variation should be taken into account. 

The mathematical model described in this study takes into account all the above aspects, 

therefore the use of a numerical method of solving is required. Such method is applied in 

the case of a permeable field exploited at various rates of flow. For each of these the 

variation of gas pressure at top of the well is to be determined. 

 

 

2 MATHEMATICAL MODEL 

The process of gas plane-quaquaversal isothermal flow through a homogenous and 

isotropic porous medium is simulated by equation [1] 
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where -Hamiltonian, m and k – porosity, i.e. the permeability of porous 

medium(constants), p – field gases pressure, and  and Z – dynamic viscosity, i.e. the factor 

of gas deviation from the perfect gas model, both depending on pressure. Equation (1) may 

also be written as  
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where the function  and   result from the relations  
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and depend on gas pressure only. Equation (2) represents the mathematical model of the 

process of gas flow through a circular field towards a central well, its solution providing the 

gas pressure distribution in time according to radius. Introducing a new dimensionless 

variable by  
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sR  being the well radius and cR  the field outline, as well as the low pressure P(,t) by 
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cp  being the critical pressure, equation (2) becomes [2] 
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where the functions  and  result from the expressions 
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and the coefficients a and b are calculated with 
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Equation (6) simulating the process of gas flow towards a central well into a 

homogenous and isotropic circular field is a differential equation with partial derivative of 

2nd  degree of parabolic type and non-linear. It admits no analytic solution, but a computer 

assisted numerical approach. 

 

 

3 INITIAL AND LIMIT CONDITIONS 

The initial condition transposes mathematically the fact that the gas pressure in entire 

field has the value pz at the initial moment, i.e. 
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The limit conditions are necessary in terms of field exploitation method and also of its 

characteristic. Hence, in case the field is exploited at constant rate of flow, the condition of 

maintaining constant the gas velocity at well outlet is to be set according to the well 

exploitation flow: 
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sQ  being the gas rate of flow, and A a constant resulted from 
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where H – thickness of carrier bed, sp  – gas pressure at top of the well,  

sT  – gas temperature at top of the well, s  – dynamic viscosity corresponding to this 

pressure, sZ  – compresibility factor corresponding to this pressure, Np  – normal 

pressure, and NT  – normal temperature. 

The second limit condition refers to the field outline. Thus, in the case of closed field with 

permeable outline(with water pushing), the condition of maintaining constant the pressure 

zp  is necessary on such outline 
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and in the case of closed field with impermeable outline, the condition of maintaining zero 

flow on such outline is necessary, i.e. 
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4 NUMERICAL METHOD 

We will transform the continuous spectrum C: [0 ≤  ≤ 1, 0 ≤  t ≤ T ] into the point discrete 

lattice Rij :[ =(i-1)h, t=jini ], where  i=1n,  j=0m are the spatial index and the 

temporal index, respectively, and h and  are the spatial pitch and temporal pitch, 

respectively, and n and m are their numbers. Thus, instead of exact values of pressure P(, 

t)  we will consider the discrete approximate values  ,j
i i jP P t .  

Making use of calculus scheme with finite quotients of Hyman Kaplan implicit type [3], 

known as stable unconditionally and absolutely convergent, as well as end approximations 

proposed by West, Garvin and Sheldon [2], equation (8) becomes a system of equations 

generated by the scheme 
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completed with 

  j
iP Pz ; 1

1
j

nP Pz
   (22) 

  1 1 1
1 2 3

2
3 4j j j hQ

P P P
A

       (23) 

  1 11
1 13 4 0j jj

n n nP P P 
     (24) 

 

Here the values of low pressure at temporal level j are considered as known, and 

unknown at temporal level j+1, respectively. 

 

 

5 NUMERICAL SIMULATION OF FIELD EXPLOITATION 

In order to solve the system of linear algebraic equations generated by the scheme with 

finite quotients (15) we will mark with P0(i) the distribution of low pressure corresponding 

to known moment, j, and with P(i) the distribution of low pressure corresponding to 

unknown moment, j+1. The two approximate solutions successively obtained by solving 

the algebraic system generated by the calculus scheme adopted will be marked with P1(i) 

and P2(i), respectively; obviously i will take values from 1 to n+1. 

To facilitate the compiling of the calculus program we will define the supporting 

functions Z(X), Zp(X), V(X), Vp(X) that will help us calculate the value sets of deviation 

factor Z(i), Zp(i) and dynamic viscosity V(i), Vp(i), respectively, corresponding to the 

distribution of low pressure at moments required by running the calculus program, i.e. for 

P0(i), P1(i)or P2(i). Now the values corresponding to expressions C(i) and D(i) can be 

calculated based on calculus procedures. 

The conditions (22), (23) and (24), respectively are obviously written as 
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In the case of permeable closed field exploited at constant pressure, the calculus scheme 

(15) 

With  the conditions (25) generate the following system of equations 
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As the resulting algebraic system has a coefficient matrix of Jacobi type, i.e. 

tridiagonally, its solving becomes easy following the use of Thomas process [2]. Thus, we 

will firstly determine 
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after which the following can be calculated for 2i n   
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and finally, because  1 zb n P  , the solution of the system of equation is 
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5 CALCULUS EXAMPLE 

We will consider a closed impermeable circular gas field having the outline radius of 

200 m, 40 m thickness, 20% porosity and 10 mD permeability. The pressure of field gases 

is of 140 bar, and their temperature of 27 C. The field is exploited by a well of 0,1 m 

radius. For pressure depending on gas viscosity and deviation factor, respectively, we 

accept the relations: 

 

    21 0,02 0,004P P P     (36) 

    21 0,062 0,004Z P P P    (37) 

 

experimentally determined from field curves. 

We will consider a spatial pitch of digitization lattice of 0,01 a temporal pitch of 60 s, 

and 10
-5

 acceptable error of iterative calculus. 

In diagram 1 the pressure curves at top of the well are showed for various values of flow 

extracted. It can be observed the extraction process becoming unstable for a certain flow 

value. 
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Diagram 1 

 

 

ABSTRACT 

 
It is regarded the isotherm movement of gases through a porous and isotropic medium towards a central well, 

taking into account the deviation from the perfect gases law and the viscosity pressure variation. The resulting 

model, completed with the specific limit conditions, is approached through a numerical method of solving and is 
applied to the wells through which the gas fields are exploited at constant flow. For the current exploitation rates 

of flow the variation curves of gas pressure at top of the well have been determined, thus resulting the flow 

maximum value after which the extraction process becomes unstable. 
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