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AN ECONOMETRIC APPROACH TO ROBUST IDENTIFICATION
FOR MODELS OF INVERSE DYNAMIC PROBLEM

D.V. Filchenko
Sumy State University

A new computational approach to identification for models of inverse dynamic
problem has been proposed. It is based on robust econometric difference and integral
identification algorithms. Their approbation is made on real statistical data for n-
industrial open macroeconomic system. All models and sub-models have been tested
for adequacy and correspondence with reality.

INTRODUCTION

Dynamic mathematical modeling still remains one of the most urgent and
difficult problems in different branches of science. It has a number of
complications connected with parameters identification and adequacy of
applied methodology. The fundamental achievements in dynamic system
analysis were made within the theory of automatic control, the main
mathematical instruments of which are the systems of differential and
difference equations [1, 2].

There exist two fundamental problems that deal with modeling the
evolution of specified dynamic systems: the law of motion identification
with the control parameters given (direct dynamic problem, DDP) and
control parameters identification with the law of motion given (inverse
dynamic problem, IDP) [3]. It is well known that pure mathematical solving
of IDP entails the stability problems [4]. Therefore it seems important to
work out and approbate robust identification methods for models of IDP.

PROBLEM STATEMENT

Let us suppose that the dynamic element of a system may be described by
the system of differential equations

x(t) = f(x(t),u(),t), (1)
where x(t) = (x1(8), x9(2), ..., xx(t)) € E*, t,<t<T is a vector of state
variables  (continuous  functions),  u(t) = (u1(?), us(t), ..., u; (t)) € E.,

to<t <T is a vector of control variables (piecewise continuous functions),
£(-) = (f1(-+), fa(*)s «ovy Fu(-)) €Cty, T] is s vector of continuously
differentiable functions, which specification depends on physical
interpretation of the model (1).

We will divide the continuous period [#y, T] into N discrete moments of
time. Suppose that at every point of time {¢ = 0, 1, ..., N-1} there exists a
statistical information x; - (xg, X1, ..., Xn.1) about all state variables from
row vector x(¢). The task is to find out control functions wu(#), which
generate such solution {x(¢)} of the system (1), that approximately, with a
known precision, will satisfy the following congruencies:

x®)=x,,{t=0,1, .., N-1}. (2)

Differently stated, we set up a problem of posterior control variables
estimation in a dynamic system given the measurement of state variables at
defined discrete points of time. This paper is organized as follows. Firstly
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we will specify the unknown vector-valued function f(--) taking
macroeconomic system investment development as an example. Secondly,
employing econometric tools, we will build up two algorithms of the model
(1) identification and examine its simulation and forecast properties. And
finally, we will test (1) for adequacy and approbate it using real statistical
dataset.

MODEL SPECIFICATION

Consider an open macroeconomic system that consists of n industries. In
most applications [5, 6] state variables of such a system are fixed capital
stocks {xq, X9, ..., x,} per industry and foreign debt x,.;. For the sake of
simplicity, fixed capital stocks and foreign debt are treated as accumulative
continuous functions. This allows using model (1) henceforth.

The rate of fixed capital change dx; /dt is the value of net investments in
the i-th industry for {i = 1, 2, ..., n}, while the rate of foreign debt change
dx,.,/dt is the value of its gross accumulation. In economic theory [7] these
values are used for the analysis of investment activity, but mainly as ratios
to gross output (e.g. GDP) rather than in absolute numbers. Therefore,
specifying vector-valued function f(-*) as a multiplication of dimensionless
values u(t) and GDP Y, i.e.

() = u(®)Y(), (3)

we obtain a pure economic interpretation of control variables. Functions
uq(t), us(t), ..., uy(t) are indices of investment activity per industry and
Unp+1(t) is an index of export-import misbalance.

As regards exogenous function Y(-) specification, it merits special
attention. Firstly, the model (1), (3) should be closed. Secondly, Y(:) should
have a convenient and reasonable functional form. Basically, for the analysis
of the first-order effects (production elasticity, marginal productivity, etc.)
log-linear form will be sufficient, while the second-order effects (e.g.
elasticity of substitution) are usually examined by trans-log forms [8].

In this article we will use two-factor log-linear functional form (Cobb-
Douglas class) with the following factors specification:

n
1nY=a0+a11ani+a21nxn+1. 4)
i=1

As a result the model made up of (1), (3), (4) is closed, and the sub-model (4)
allows exploring ‘regresand-regressors’ system without direct correlation
analysis.

It also convenient (for the further research) to use polynomial
specification of control vector-valued function u(¢):

w(t)=b o +b yt+b nt® +.tb , th {i=1 2 ., n+tl}. (5)

Generally speaking, the order k; may be chosen with different
considerations: to ensure high simulation or forecast properties, to increase
the coefficient of determination R2, etc. Nevertheless the substantial
restriction in achieving all of abovementioned goals is that the higher the
order k; in (5), the lower the degree of freedom, and consequently the lower
the quality of the model.
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MODEL IDENTIFICATION

The question of parameters identification arises naturally (4), (5).
Further we will use ordinary least squares (OLS) estimation. In order to
apply it, the model made up of (1), (3), (4), and (5) should be transformed
into a discrete form (from differential to difference equations). Remember
that N is the number of discrete points within [¢o, T']. Hence we arrive at
the following  difference equations for {¢=0,1, .., N-2} and
{I=1, 2, .., ntl}:

X, (t+1) = 2,()) + by Y|, + byt Y], +...+ b, £ Y], + 6, (1), (6)

where ¢, (t) is a random disturbance, or if presented in a matrix form:
]

Y 0 ..

o © 0 bo | (€0 x;(1) - x;,(0)
Y‘t:l ﬂt:O o ﬂt:O b, &1 x,(2)—x;(1)
Y‘tzz ZY‘t:z """ 2 Y‘t:z by |+ & |= x,(3) - x,(2)

s b, ; x,(N-1)-x(N-2
Y, o, (N-2Y] .. ... Ww-24y o [\O) &) (EOV-D-x(V-2)

Model (6) is a regression that belongs to the class of regressions through
the origin (RTO): its functional form does not contain a constant term that
is required for the classical regression models [9].

Therefore it seems naturally to modify model (1) in order to avoid this
subtle obstacle. Integrating formula (1) over period of time [#y, ¢] will result
in

t
x(t) = X" (t) + [ £(x(0), u(t), vt
to
Using (4), (5), we arrive at a discrete counterpart of the model (1):
t t

t
2+ =% +bo ) Y| 40, D Y] et by D Y] vy O (7)
j=0 j=0 j=0

where v, (t)is a random disturbance, or if presented in a matrix form:
]

1 0 0 0 . .
1y, o 0 ol %, (0)
1 1 bio Vio x; (1)
1Yy, Dty Zt’wt by |+|vy |=| %2
t=0 t=0 t=0
e e — b | i | L=V -1
1 Y|, ty|, thy
t=0 t=0 t=0 ¢
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In contrast to difference identification scheme (6), integral identification
scheme (7) is a regression with an intercept. Despite that in econometric
literature one can encounter some ambiguities concerning RTO, we will use
both scheme (6) and (7) in order to compare them from the view-point of
simulation and forecast properties.

We still have to identify the order k; of (5). In this article they will be
obtained under conditions of forecast confidence intervals minimization. For
the forecast value of state variable x;(IN) the latter is defined as follows:

x,(N)-6 t, <x,(N)<x,(N)+5 t,, (8)

where x;(N) is a point forecast; ¢, is a percentile of Student’s distribution
with a, level of significance; 0 is a standard error of forecasting [10].

ESTIMATED RESULTS

Approbation of the models (6) and (7) is based on two-industrial Danish
economy in 1966-1997. All statistical information is available (see [11, 12]).
Let the first industry consist of manufacturing and agricultural branches
and the second one of services branches of economy.

According to (4) Denmark’s GDP is approximated with two regressors:

n

fixed capital stock in and foreign debt x,.i. The obtained OLS-
i=1

estimations are:

InY =0.3859 +0.8145 In(x; +x,)+0.1120 Inx;, R2?= 0.9968, 9)
(s.e) (0.3195)  (0.0428 ) (0.0252)

where numbers in brackets are standard errors of regression coefficients. All
coefficients, except the first one, appear to be statistically significant (we
use Student’s test for the number of freedom [ = 29 and level of significance
o = 5%). Such results are quite natural in econometric literature [8] when
using log-linear functional forms for the purpose of regression analysis and
together with high coefficient of determination R2 imply that the model is
quite fulfilled with specified factors.
Since elasticity of production for factor x is defined by the formula

E, - olny ,
Olnx

it follows from (9) that the elasticity of production for summarized fixed
capital stock x;+xy is 0.8145, while the elasticity of production for foreign
debt x3 is 0.1120. Consequently, in the analyzed period of time the impact
of foreign debt on Denmark’s GDP was not essential (although it appears to
be statistically significant). Another conclusion is that the diminishing
return to scale was present (a;+as = 0.9265 < 1) at that time.

The exponential form of equation (9) is

Y =1.4710  (x, +x,) 814501120

Let us now turn to the polynomial (5) identification. Below there are
results of OLS estimation for difference identification scheme (6)
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u; (t) = 0.1469-0.0037¢, u,(t) = 0.221964-0.006613¢ +0.000042¢* (10)
(se)  (0.0118)  (0.0005) e (0.0448) (0.0043) (0.0001)

and integral identification scheme (7)

u;(t) = 0.1543-0.0041¢, u,(t) = 0.2278-0.0062¢ +0.000012¢*.  (11)
(s.0)  (0-0033) (0.0002) (o)  (0.0167) (0.0019) (0.000051)

All coefficients, except the last two for us(#) in (10) and the last for us(¢) in
(11), are statistically significant, providing the high level of approximation
for state variables x; and x,. Particularly, coefficients of determination R2
are 0.9986 and 0.9982 for scheme (6) and 0.9979 and 0.9966 for scheme (7).

As the experiment reveals, optimal order k; for each of polynomials (5)
appears to be between 0 and 3. Interval forecasts (8) for state variables x;
and x5 are 1197674.539 = 20073.928 and 1800344.834 += 36369.454 for
scheme (6) versus 11883527.018 = 34599.568 and 1764626.422 = 56578.455
for scheme (7). Obviously, confidence intervals for the forecasts based on
difference identification algorithm are narrower: 1.68 and 2.02 versus 2.92
and 3.21 (as percentages of point forecasts). Further approbation, as well as
abovementioned one, confirms that difference identification scheme (6) is
more preferable for forecast purposes, while integral identification scheme
(7) ensures better simulation properties.

TESTING FOR ADEQUACY

The procedure of model verification comprises two stages: statistical
analysis of precision and testing for adequacy. The first was demonstrated
in the previous section and revealed excellent simulation and forecast
precisions. The latter is based on examining model’s residuals, specifically,
on testing their correspondence with normal distribution and all
assumptions of the classical regression [8].

Firstly, let us consider sub-model (9). Usually it is worth to start with
testing for multicollinearity. It may happen that correlation between fixed
capital stock and foreign debt is rather strong, especially when fixed capital
accumulation stems from foreign investments, while the part of export in
balance of payment deficit is negligible. Using correlation analysis of
‘refressors’ system for sub-model (9), one can conclude that according to
Fisher-Yates criterion [10] with level of significance a = 5% the problem of
multicollinearity does not occur.

The hypothesis about normal distributed residuals ¢; (i = 0, 1, ..., N-1) in
(9) is tested according to Fisher criterion. It answers the following question:
whether estimation A4 of skewness and estimation E of kurtosis differ

significantly from their mathematical expectations, which in case of normal
distribution equal to zero. The rule-of-thumb described in [10] for

A=054(c2 =041) and E =0.03(c =0.81) implies that values 4 and E
can be considered statistically insignificant.
The following four conditions to validate are known as Gauss-Markov

assumptions. The first one claims that mathematical expectation of residuals
g ((=0,1, .., N-1) in (9) is equal to zero. Direct computation gives

D& =0.
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The second assumption (homoscedasticity) we will prove using Breush-
Pagan test [9], which is grounded on significance verification for squared
residuals model

~D *
€7 =0y +0,(x; +x,)+0,x5+€ .

When finding OLS-estimators 50 , 51 , 52 of unknown coefficientso,, 6,, 6,,

one can compare Fisher statistics F = 2.85-statistics and its critical value
F.. = 3.33. As a result (F < F.;) the auxiliary squared residuals model is
statistically insignificant.

The next assumption is about non-correlative values of &: cov(e;, ;) = 0
for all i #j. Using Durbin-Watson test [8], we can find out whether the
first-order autocorrelation is present in (9): d-statistics is computed as
follows:

N=L o,
> (& —&1)
_ =1
d= N1,
> é:
t=0

It equals 0.35, that is lower than critical value d; = 1.31. This confirms
presence of the first-order positive autocorrelation. The latter frequently
occurs in time-series analysis and may detect wrong factors specification.
Nevertheless, presence of autocorrelation in many dynamic series is
considered to be possible.

The fourth Gauss-Markov assumption (non-stochastic regressors) means
that cov(x;s, ¢;) = 0 for all values of i and k. Correlation analysis in ‘factors-
disturbances’ system gives strong evidence that there is no correlation
between regressors and random disturbances (all partial coefficients of
correlation appears to be lower than Fisher-Yates critical value r.. = 0.349).

Finally, let us turn to models (6)-(7). Testing for adequacy is made within
the framework outlined earlier. In difference identification scheme (6), as
well as in integral one (7), the first-order positive autocorrelation is
revealed. Other assumptions of classical regression are fulfilled except the
first Gauss-Markov condition for scheme (6). RTO is a special class of
regressions which require special attention, especially when computing
coefficient of determination R2? and standard errors for estimated
coefficients. Thus an additional regression analysis with some robust
correction should be made. On the whole, its results correspond to earlier
analysis.

CONCLUSIONS

Robust identification for models of IDP is a problem that occurs in
different branches connected with dynamic systems and optimal control. In
this article two econometric algorithms were elaborated and tested.
Difference identification scheme appeared to be more useful for forecast
analysis, while integral one demonstrated better simulation properties. The
approbation of all models and sub-models was made using an open
macroeconomic system investment development as an example. All models
and sub-models corresponded to reality and demonstrated the possibility of
their practical application. One of the essential parts of econometric
analysis, procedure of verification, also confirmed adequacy of proposed
models.
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SUMMARY

EKOHOMIYHHUM IIAXIT A0 ITEHTHPIKAIIT MOJAEJIEN
OBEPHEHUX 3AJTAY TUHAMIKHA

A.B. Dinvuenko

Cmammsa npucesiena npobnemi idenmu@ikayii modeneii obGepHeHol 3adaui OuHAMIKU.

3anponorosanuil Ho8uil nidxid, w0 06A3YyemMvbCa HA eKOHOMeMmPUYHOMY aHAAi3i i € pobacmHum
memodom 0ns npakmuinozo 3acmocysanns. Ocobausa yseaza 30cepedieHd HA NOPIBHALLHOMY
aHnanizi 060x anzopummis: 3a pi3HUYe8010 Ma iHmezpaavbHow cxemamu. Takox onucarno npukiad
IX MOXMCAUB0Z0 3ACMOCYBAHHA 8 MAKPOCKOHOMIYHOMY ModentoearHi. Bci modeni anpobosani Ha
peanvHux cmamucmuyHux 0aHux ma nepesgipeHi Ha adeK6amHicmo.
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