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A new computational approach to identification for models of inverse dynamic 
problem has been proposed. It is based on robust econometric difference and integral 
identification algorithms. Their approbation is made on real statistical data for n-
industrial open macroeconomic system. All models and sub-models have been tested 
for adequacy and correspondence with reality. 

 
INTRODUCTION 

Dynamic mathematical modeling still remains one of the most urgent and 
difficult problems in different branches of science. It has a number of 
complications connected with parameters identification and adequacy of 
applied methodology. The fundamental achievements in dynamic system 
analysis were made within the theory of automatic control, the main 
mathematical instruments of which are the systems of differential and 
difference equations [1, 2]. 

There exist two fundamental problems that deal with modeling the 
evolution of specified dynamic systems: the law of motion identification 
with the control parameters given (direct dynamic problem, DDP) and 
control parameters identification with the law of motion given (inverse 
dynamic problem, IDP) [3]. It is well known that pure mathematical solving 
of IDP entails the stability problems [4]. Therefore it seems important to 
work out and approbate robust identification methods for models of IDP. 

 
PROBLEM STATEMENT 

Let us suppose that the dynamic element of a system may be described by 
the system of differential equations 

 
 )),(),(()( tttt uxfx =& , (1) 

 
where x(t) = (x1(t), x2(t), …, xk(t))/  ∈ Ek, t0 ≤ t ≤ T is a vector of state 
variables (continuous functions), u(t) = (u1(t), u2(t), …, ul (t))/ ∈ El, 
t0 ≤ t ≤ T is a vector of control variables (piecewise continuous functions), 
f(∙∙∙) = (f1(∙∙∙), f2(∙∙∙), ..., fk(∙∙∙))/∈C1[t0, T] is s vector of continuously 
differentiable functions, which specification depends on physical 
interpretation of the model (1). 

We will divide the continuous period [t0, T] into N discrete moments of 
time. Suppose that at every point of time {t = 0, 1, …, N-1} there exists a 
statistical information xt = (x0, x1, …, xN-1) about all state variables from 
row vector x(t). The task is to find out control functions u(t), which 
generate such solution {x(t)} of the system (1), that approximately, with a 
known precision, will satisfy the following congruencies: 

 
 tt xx ≅)( , {t = 0, 1, …, N-1}. (2) 

 
Differently stated, we set up a problem of posterior control variables 

estimation in a dynamic system given the measurement of state variables at 
defined discrete points of time. This paper is organized as follows. Firstly 
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we will specify the unknown vector-valued function f(∙∙∙) taking 
macroeconomic system investment development as an example. Secondly, 
employing econometric tools, we will build up two algorithms of the model 
(1) identification and examine its simulation and forecast properties. And 
finally, we will test (1) for adequacy and approbate it using real statistical 
dataset. 

 

MODEL SPECIFICATION 

Consider an open macroeconomic system that consists of n industries. In 
most applications [5, 6] state variables of such a system are fixed capital 
stocks {x1, x2, …,  xn} per industry  and foreign debt xn+1. For the sake of 
simplicity, fixed capital stocks and foreign debt are treated as accumulative 
continuous functions. This allows using model (1) henceforth. 

The rate of fixed capital change idx dt  is the value of net investments in 

the i-th industry for {i = 1, 2, …, n}, while the rate of foreign debt change 

1ndx dt+  is the value of its gross accumulation. In economic theory [7] these 
values are used for the analysis of investment activity, but mainly as ratios 
to gross output (e.g. GDP) rather than in absolute numbers. Therefore, 
specifying vector-valued function f(∙∙∙) as a multiplication of dimensionless 
values u(t) and GDP Y, i.e. 

 
 f(∙∙∙) = u(t)Y(∙), (3) 
 
we obtain a pure economic interpretation of control variables. Functions 
u1(t), u2(t), ..., un(t) are indices of investment activity per industry and 
un+1(t) is an index of export-import misbalance. 

As regards exogenous function Y(∙) specification, it merits special 
attention. Firstly, the model (1), (3) should be closed. Secondly, Y(∙) should 
have a convenient and reasonable functional form. Basically, for the analysis 
of the first-order effects (production elasticity, marginal productivity, etc.) 
log-linear form will be sufficient, while the second-order effects (e.g. 
elasticity of substitution) are usually examined by trans-log forms [8].  

In this article we will use two-factor log-linear functional form (Cobb-
Douglas class) with the following factors specification: 

 

 0 1 2 1
1

ln ln ln
n

i n
i

Y a a x a x +
=

= + +∑ . (4) 

 
As a result the model made up of (1), (3), (4) is closed, and the sub-model (4) 
allows exploring ‘regresand-regressors’ system without direct correlation 
analysis. 

It also convenient (for the further research) to use polynomial 
specification of control vector-valued function u(t): 

 

 2
0 1 2 1i

i

k
i i i i iku (t) = b  + b t + b t  + … + b t , {i = 1, 2, ..., n + } . (5) 

 
Generally speaking, the order ki may be chosen with different 
considerations: to ensure high simulation or forecast properties, to increase 
the coefficient of determination R2, etc. Nevertheless the substantial 
restriction in achieving all of abovementioned goals is that the higher the 
order ki in (5), the lower the degree of freedom, and consequently the lower 
the quality of the model. 
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MODEL IDENTIFICATION 

The question of parameters identification arises naturally (4), (5). 
Further we will use ordinary least squares (OLS) estimation. In order to 
apply it, the model made up of (1), (3), (4), and (5) should be transformed 
into a discrete form (from differential to difference equations). Remember 
that N is the number of discrete points within [t0, T]. Hence we arrive at 
the following difference equations for {t = 0, 1, …, N-2} and 
{I = 1, 2, …, n+1}: 

 

 0 1( 1) ( ) ... ( )i

i i

k
i i i i ik kt t t

x t x t b Y b tY b t Y tε+ = + + + + + , (6) 

 
where ( )

ik
tε  is a random disturbance, or if presented in a matrix form: 
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Model (6) is a regression that belongs to the class of regressions through 

the origin (RTO): its functional form does not contain a constant term that 
is required for the classical regression models [9]. 

Therefore it seems naturally to modify model (1) in order to avoid this 
subtle obstacle. Integrating formula (1) over period of time [t0, t] will result 
in 

0

*
0( ) ( ) ( ( ), ( ), )

t

t

t t t t t dt= + ∫x x f x u . 

Using (4), (5), we arrive at a discrete counterpart of the model (1): 
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where ( )
ik

tν is a random disturbance, or if presented in a matrix form: 
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In contrast to difference identification scheme (6), integral identification 
scheme (7) is a regression with an intercept. Despite that in econometric 
literature one can encounter some ambiguities concerning RTO, we will use 
both scheme (6) and (7) in order to compare them from the view-point of 
simulation and forecast properties. 

We still have to identify the order ki of (5). In this article they will be 
obtained under conditions of forecast confidence intervals minimization. For 
the forecast value of state variable xi(N) the latter is defined as follows: 

 
 -  

( ) ( ) ( )i i ix N t x N x N tα αδ δ< < + , (8) 

 
where 

 
( )ix N  is a point forecast; tα is a percentile of Student’s distribution 

with  α, level of significance; δ is a standard error of forecasting [10]. 
 

ESTIMATED RESULTS 

Approbation of the models (6) and (7) is based on two-industrial Danish 
economy in 1966-1997. All statistical information is available (see [11, 12]). 
Let the first industry consist of manufacturing and agricultural branches 
and the second one of services branches of economy. 

According to (4) Denmark’s GDP is approximated with two regressors: 

fixed capital stock 
1

n

i
i

x
=
∑  and foreign debt xn+1. The obtained OLS-

estimations are: 
 

 1 2 3
(s.e.) ( 0.3195 ) ( 0.0428 ) ( 0.0252 )
ln 0.3859 0.8145 ln( ) 0.1120 lnY x x x= + + + ,  R2 = 0.9968, (9) 

 
where numbers in brackets are standard errors of regression coefficients. All 
coefficients, except the first one, appear to be statistically significant (we 
use Student’s test for the number of freedom l = 29 and level of significance 
α = 5%). Such results are quite natural in econometric literature [8] when 
using log-linear functional forms for the purpose of regression analysis and 
together with high coefficient of determination R2

 imply that the model is 
quite fulfilled with specified factors. 

Since elasticity of production for factor x is defined by the formula 

ln

lnx
Y

E
x

∂
=

∂
, 

it follows from (9) that the elasticity of production for summarized fixed 
capital stock x1+x2 is 0.8145, while the elasticity of production for foreign 
debt x3 is 0.1120. Consequently, in the analyzed period of time the impact 
of foreign debt on Denmark’s GDP was not essential (although it appears to 
be statistically significant). Another conclusion is that the diminishing 
return to scale was present (a1+a2 = 0.9265 < 1) at that time. 

The exponential form of equation (9) is 
 

0.8145 0.1120
1 2 31.4710 ( )Y x x x= + . 

 
Let us now turn to the polynomial (5) identification. Below there are 

results of OLS estimation for difference identification scheme (6) 
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(0.0005)

-1
(0.0118)(s.e.)

( ) 0.1469 0.0037u t t= ,   - 2
2

(0.0448) (0.0043) (0.0001)(s.e.)

( ) 0.221964 0.006613 0.000042u t t t= +  (10) 

 
and integral identification scheme (7) 
 
 -1

(0.0033) (0.0002)(s.e.)

( ) 0.1543 0.0041u t t= ,   - 2
2

(0.0167) (0.0019) (0.000051)(s.e.)

( ) 0.2278 0.0062 0.000012u t t t= + . (11) 

 
All coefficients, except the last two for u2(t) in (10) and the last for u2(t) in 
(11), are statistically significant, providing the high level of approximation 
for state variables x1 and x2. Particularly, coefficients of determination R2 
are 0.9986 and 0.9982 for scheme (6) and 0.9979 and 0.9966 for scheme (7). 

As the experiment reveals, optimal order ki for each of polynomials (5) 
appears to be between 0 and 3. Interval forecasts (8) for state variables x1 
and x2 are 1197674.539 ± 20073.928 and 1800344.834 ± 36369.454 for 
scheme (6) versus 11883527.018 ± 34599.568 and 1764626.422 ± 56578.455 
for scheme (7). Obviously, confidence intervals for the forecasts based on 
difference identification algorithm are narrower: 1.68 and 2.02 versus 2.92 
and 3.21 (as percentages of point forecasts). Further approbation, as well as 
abovementioned one, confirms that difference identification scheme (6) is 
more preferable for forecast purposes, while integral identification scheme 
(7) ensures better simulation properties. 

 
 

TESTING FOR ADEQUACY 

The procedure of model verification comprises two stages: statistical 
analysis of precision and testing for adequacy. The first was demonstrated 
in the previous section and revealed excellent simulation and forecast 
precisions. The latter is based on examining model’s residuals, specifically, 
on testing their correspondence with normal distribution and all 
assumptions of the classical regression [8]. 

Firstly, let us consider sub-model (9). Usually it is worth to start with 
testing for multicollinearity. It may happen that correlation between fixed 
capital stock and foreign debt is rather strong, especially when fixed capital 
accumulation stems from foreign investments, while the part of export in 
balance of payment deficit is negligible. Using correlation analysis of 
‘refressors’ system for sub-model (9), one can conclude that according to 
Fisher-Yates criterion [10] with level of significance α = 5% the problem of 
multicollinearity does not occur. 

The hypothesis about normal distributed residuals εi (i = 0, 1, …, N-1) in 
(9) is tested according to Fisher criterion. It answers the following question: 

whether estimation Â  of skewness and estimation Ê  of kurtosis differ 
significantly from their mathematical expectations, which in case of normal 
distribution equal to zero. The rule-of-thumb described in [10] for 

540.ˆ =A ( 4102 .ˆ =Aσ ) and 030.ˆ =E ( 8102 .ˆ =Eσ ) implies that values Â  and Ê  

can be considered statistically insignificant. 
The following four conditions to validate are known as Gauss-Markov 

assumptions. The first one claims that mathematical expectation of residuals 
εi (i = 0, 1, …, N-1) in (9) is equal to zero. Direct computation gives 

∑ = 0iε̂ . 
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The second assumption (homoscedasticity) we will prove using Breush-
Pagan test [9], which is grounded on significance verification for squared 
residuals model 

*)(ˆ εδδδε ++++= 322110
2 xxx . 

 

When finding OLS-estimators 0δ̂ , 1δ̂ , 2δ̂  of unknown coefficients 0δ , 1δ , 2δ , 

one can compare Fisher statistics F = 2.85-statistics and its critical value 
Fcr = 3.33. As a result (F < Fcr) the auxiliary squared residuals model is 
statistically insignificant. 

The next assumption is about non-correlative values of ε: cov(εi, εj) = 0 
for all i ≠ j. Using Durbin-Watson test [8], we can find out whether the 
first-order  autocorrelation is present in (9): d-statistics is computed as 
follows: 
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It equals 0.35, that is lower than critical value dl = 1.31. This confirms 
presence of the first-order positive autocorrelation. The latter frequently 
occurs in time-series analysis and may detect wrong factors specification. 
Nevertheless, presence of autocorrelation in many dynamic series is 
considered to be possible. 

The fourth Gauss-Markov assumption (non-stochastic regressors) means 
that cov(xik, εi) = 0 for all values of i and k. Correlation analysis in ‘factors-
disturbances’ system gives strong evidence that there is no correlation 
between regressors and random disturbances (all partial coefficients of 
correlation appears to be lower than Fisher-Yates critical value rcr = 0.349). 

Finally, let us turn to models (6)-(7). Testing for adequacy is made within 
the framework outlined earlier. In difference identification scheme (6), as 
well as in integral one (7), the first-order positive autocorrelation is 
revealed. Other assumptions of classical regression are fulfilled except the 
first Gauss-Markov condition for scheme (6). RTO is a special class of 
regressions which require special attention, especially when computing 
coefficient of determination R2 and standard errors for estimated 
coefficients. Thus an additional regression analysis with some robust 
correction should be made. On the whole, its results correspond to earlier 
analysis. 

 
CONCLUSIONS 

Robust identification for models of IDP is a problem that occurs in 
different branches connected with dynamic systems and optimal control. In 
this article two econometric algorithms were elaborated and tested. 
Difference identification scheme appeared to be more useful for forecast 
analysis, while integral one demonstrated better simulation properties. The 
approbation of all models and sub-models was made using an open 
macroeconomic system investment development as an example. All models 
and sub-models corresponded to reality and demonstrated the possibility of 
their practical application. One of the essential parts of econometric 
analysis, procedure of verification, also confirmed adequacy of proposed 
models. 
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SUMMARY 
ÅÊÎÍÎÌ²×ÍÈÉ Ï²ÄÕ²Ä ÄÎ ²ÄÅÍÒÈÔ²ÊÀÖ²¯ ÌÎÄÅËÅÉ  

ÎÁÅÐÍÅÍÈÕ ÇÀÄÀ× ÄÈÍÀÌ²ÊÈ 
Ä.Â. Ô³ëü÷åíêî 

Ñòàòòÿ ïðèñâÿ÷åíà ïðîáëåì³ ³äåíòèô³êàö³¿ ìîäåëåé îáåðíåíî¿ çàäà÷³ äèíàì³êè. 
Çàïðîïîíîâàíèé íîâèé ï³äõ³ä, ùî áàçóºòüñÿ íà åêîíîìåòðè÷íîìó àíàë³ç³ ³ º ðîáàñòíèì 
ìåòîäîì äëÿ ïðàêòè÷íîãî çàñòîñóâàííÿ. Îñîáëèâà óâàãà çîñåðåäæåíà íà ïîð³âíÿëüíîìó 
àíàë³ç³ äâîõ àëãîðèòì³â: çà ð³çíèöåâîþ òà ³íòåãðàëüíîþ ñõåìàìè. Òàêîæ îïèñàíî ïðèêëàä 
¿õ ìîæëèâîãî çàñòîñóâàííÿ â ìàêðîåêîíîì³÷íîìó ìîäåëþâàíí³. Âñ³ ìîäåë³ àïðîáîâàí³ íà 
ðåàëüíèõ ñòàòèñòè÷íèõ äàíèõ òà ïåðåâ³ðåí³ íà àäåêâàòí³ñòü. 
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