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Using the Lorenz model for viscoelastic medium approximation the 

melting of ultrathin lubricant film is studied by friction between atomically flat 
surfaces. The fluctuations of lubricant temperature are taken into account 
defined by Ornstein-Uhlenbeck process. The phase portraits are defined 
corresponding to the different regions of dynamic phase diagram and 
determining system’s kinetics. It is shown that the singular point, meeting the 
mode of dry friction, has indefinite character of stability. The other most 
probable steady-states of the system, corresponding to the stable and 
metastable sliding friction, are presented by the focus-type singular points in 
phase portraits. Consequently, the system can demonstrate damping 
oscillations near stable steady-states. The large extension of depicting 
trajectories near focuses along the axes of phase plane testifies to stability of 
sliding friction. Since maximums of distribution function, separated by the 
pronounced minimums of probability, correspond to the steady-state modes of 
friction, the transitions between them occur after large intervals of time. 
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Recently problems of sliding friction of flat solid surfaces attract a considerable 
attention at presence of thin film of lubricant between them [1,2]. It is conditioned by 
growth of need in low-friction elements in such high-tech components as computer 
storage systems, miniature engines, and aerospace devices. It is found experimentally that 
in the process of friction the liquid film becomes progressively thinner, at first its 
physical properties change gradually (quantitatively), and then the changes acquire the 
sharp (qualitative) character.  

The boundary mode of friction is described in the proposed work realized in the 
case of ultrathin lubricant films with thickness less than four diameters of molecules at 
smooth surfaces or asperities, high loads, and low shear rates. It is characterized by the 
following changes of static (equilibrium) and dynamic properties of lubricant - simple 
unstructured Newtonian liquid [2]:  

- non-fluidlike (non-Newtonian) properties: transition between liquid and solid 
phases, appearance of new liquid-crystalline states, epitaxially induced long-range 
ordering;  
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- tribological properties: absence of flow until yield point or critical shear stress 

reached, solidlike behaviour of liquid lubricant characterized by defect diffusion and 
dislocation motion, shear melting, boundary lubrication.  

Experiments with mica, silica, metal oxide, and surfactant monolayer surfaces, 
between which organic liquids and aqueous solutions were placed, have shown that there 
are transformations between the different types of dynamic phases during sliding [2]. 
They manifest themselves in appearance of interrupted (stick-slip) friction, which is 
characterized by periodic transitions between two or more dynamic states during the 
stationary sliding and is the major reason for destruction and wear of frictional elements. 
Thus, molecularly thin lubricant films undergo more than one type of transition, that 
results to existence of different types of stick-slip mode of motion.  

In works [3] a melting of ultrathin lubricant film by friction between atomically flat 
surfaces is represented as a result of self-organization of the shear stress and stain, and 
the temperature. The additive noises of these quantities are introduced for building the 
phase diagrams, where fluctuations intensities and frictional surfaces temperature define 
the domains of sliding, stick-slip, and dry friction [4]. In Ref. [5] the conditions are found 
at which the stick-slip friction regime corresponds to the intermittency mode inherent in 
self-organized criticality phenomenon. The dynamic phase diagram is studied taking into 
account correlated fluctuations of its temperature defined by Ornstein-Uhlenbeck process 
[6].  

This paper, being the prolongation of Ref. [6], is devoted to investigation of kinetic 
modes of boundary friction using phase-plane method. The shear stress distribution 
function is studied and phase portraits are calculated for the cases of second-order and 
first-order transitions — the melting of amorphous and crystalline lubricant, respectively. 
The self-similar phase kinetics of lubricant film is investigated. 

In the previous works [3] on the basis of rheological description of viscoelsatic 
medium the system of kinetic equations has been obtained, which define the mutually 
coordinated evolution of the elastic shear components of the stress σ  and the strain ε , 
and the temperature T  in ultrathin lubricant film during friction between atomically flat 
mica surfaces. Let us write these equations using the measure units  
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for variables σ , ε , T , respectively, where ρ  is the mass density, vc  is the specific heat 
capacity, cT  is the critical temperature, ( )cTT 20 =η≡η  is the typical value of shear 

viscosity η , kcl vT /2ρ≡τ  is the time of heat conductivity, l  is the scale of heat 
conductivity, k  is the heat conductivity constant, ετ  is the relaxation time of matter 
strain, ετη≡ /00G :  

ε+σ=στσ g- ,                                                    (2) 
σ+ε=ετε )1-(- T ,                                               (3) 

( )tTTT eT λ+σ+σε−=τ 2)-( .                        (4) 
Here the stress relaxation time στ , the temperature eT  of atomically flat mica 

friction surfaces, and the constant 0/ GGg =  are introduced, where G  is the lubricant 
shear modulus. Equation (2) is reduced to the Maxwell-type equation for viscoelastic 
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matter approximation by replacement στε /  on t∂ε∂ / . As is known [1] the Maxwell-
type equation is widely used in the theory of boundary friction. The relaxation behaviour 
of viscoelastic lubricant during the process of friction is described also by Kelvin-Voigt 
equation (3) [3, 7]. It takes into account the dependence of the shear viscosity on the 
dimensionless temperature )1-/(0 Tη=η  [8]. Jointly, Eqs. (2) and (3) represent the new 
rheological model. It is worth noting that rheological properties of lubricant film are 
investigated experimentally for construction of phase diagram [2]. Equation (4) 
represents the heat conductivity expression, which describes the heat transfer from the 
friction surfaces to the layer of lubricant, the effect of the dissipative heating of a viscous 
liquid flowing under the action of the stress, and the reversible mechanic-and-caloric 
effect in linear approximation. Equations (2) - (4) coincide with the synergetic Lorenz 
system formally [9, 10], where the elastic shear stress acts as the order parameter, the 
conjugate field is reduced to the elastic shear strain, and the temperature is the control 
parameter. As is known this system can be used for description of the thermodynamic 
phase and the kinetic transitions.  

The purpose of this work is to study the kinetics of boundary friction, described by 
the phase portraits, at introduction into Eq. (4) the stochastic source ( )tλ  representing the 
Ornstein-Uhlenbeck process:  
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where I  is the fluctuations intensity, λτ  is the time of their correlation.  
In Refs. [3] a melting of ultrathin lubricant film by friction between atomically flat 

mica surfaces has been represented as a result of action of spontaneously appearing 
elastic field of stress shear component caused by the heating of friction surfaces above 
the critical value 11 −+= gTc . Thus, according to such approach the studied solidlike-
liquidlike transition of lubricant film occurs due to both thermodynamic and shear 
melting. The initial reason for this self-organization process is the positive feedback of 
T  and σ  on ε  [see Eq. (3)] conditioned by the temperature dependence of the shear 
viscosity leading to its divergence. On the other hand, the negative feedback of σ  and ε  
on T  in Eq. (4) plays an important role since it ensures the system stability.  

According to this approach the lubricant represents a strongly viscous liquid that 
can behave itself similar to the solid — has a high effective viscosity and still exhibits a 
yield stress [2, 7]. Its solidlike state corresponds to the elastic shear stress 0=σ  because 
Eq. (2), describing the elastic properties at steady state 0=σ , falls out of consideration. 
Equation (3), containing the viscous stress, reduces to the Debye law describing the rapid 
relaxation of the elastic shear strain during the microscopic time ca /≈τε ~ 1210−  s, 

where a ~1  nm is the lattice constant or the intermolecular distance and c ~ 310  m/s is 
the sound velocity. At that the heat conductivity equation (4) takes the form of simplest 
expression for temperature relaxation that does not contain the terms representing the 
dissipative heating and the mechanic-and-caloric effect of a viscous liquid.  

At non-zero value of σ  Eqs. (2)-(4) describes the above mentioned properties 
inherent in the liquidlike state of lubricant. Moreover, in accordance with Ref. [11] in the 
absence of shear deformations the temperature mean-square displacement is defined by 
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equality GaTu /2 = . The average shear displacement is found from the relationship 

2222 / Gau σ= . The total mean-square displacement represents the sum of these 

expressions provided that the thermal fluctuations and the stress are independent. Above 
implies that the transition of lubricant from solidlike to fluidlike state is induced both by 
heating and under influence of stress generated by solid surfaces at friction. This agrees 
with examination of solid state instability within the framework of shear and dynamic 
disorder-driven melting representation in absence of thermal fluctuations. It is assumed 
that the film becomes more liquidlike and the friction force decreases with the 
temperature growth due to decreasing activation energy barrier to molecular hops. 
Besides, the friction force decreases with increasing velocity at the contact tlV ∂ε∂= /  
because the latter leads to the growth of the shear stress σ  according to the Maxwell 
stress - strain ε  relation: tGt ∂ε∂+τσ−=∂σ∂ σ /// .  

This work is devoted to study of stochastic source ( )tλ  influence on evolution of 
stress ( )tσ . In accordance with experimental data for organic lubricant [2, 4] stress 

relaxation time at normal pressure is equal to στ ~ 1010−  s. Since ultrathin lubricant film 
consists of less than four molecular layers, the temperature relaxes to the value eT  during 
the time satisfying to inequality στ<<τT . Therefore, we will suppose that conditions 
are fulfilled  

Tτ>>τ≈τ εσ ,                                     (6) 
at which lubricant temperature T  follows to the change of shear components of stress σ  
and strain ε . Then, it is possible to select a small parameter and to put 0≅τ TT  in 
Eq. (4). As a result, we obtain the expression for temperature:  

( )tTT e λ+σ+σε−= 2 .                                    (7) 
Let us give to the system (2), (3), (7) more simple form, reducing it to the single 

equation for shear stress ( )tσ . For this purpose it is necessary to express ε  and T  via 
σ . Differentiating with respect to time the equation for strain ε , that is obtained from 
(2), we get equation for ε . Substituting these expressions for ε , ε , and equality (7) in 
(3), we obtain evolution equation in canonical form of equation for nonlinear stochastic 
oscillator of the van der Pole generator type:  

( ) ( ) ( ) ( )tfm λσφ+σ=σσγ+σ ,                          (8) 
where coefficient of friction γ , force f , amplitude of noise φ , and parameter m  are 
defined by expressions  

( ) ( )[ ]211
σ+τ+τ≡σγ σεg

, ( ) ( ) ( )11 131 −σ−−−σ≡σ −− ggTf e , 

( ) σ≡σφ , 
g

m εσττ
≡ .                                (9) 

Let us find the distribution function of the stress σ . To that end we will use the method 
of effective potential [6], [12] — [14]. As a result, the Fokker-Planck equation is 
obtained:  
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It is expressed in terms of coefficients  
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In the stationary case the solution of Eq. (10) leads to the distribution  
( ) ( ){ }σ−=σ − EZP exp1 ,                            (13) 

which is fixed by effective potential  
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The stationary shear stress is found from the extremum condition of distribution (13)  
( )( )
( )( )

02

1
=

σ
σ

D
D .                                  (16) 

According to Fig. 1 the distribution (13) has pronounced maximums whose position is 
determined by the set of parameters στ , ετ , λτ , g , I , and eT . At the small values of 
friction surfaces temperature eT  a single maximum is realized at point 0=σ  meeting the 
dry friction mode. With eT  growth two maximums appear at points 0=σ , and 0≠σ , 
the first of them corresponds to the dry friction, the second one — to the sliding. The 
stick-slip friction mode is realized here characterized by transitions between the indicated 
stationary regimes. With further growth of eT  the zero maximum of ( )σP  disappears, 
and maximum at 0≠σ  remains only, i.e. lubricant becomes liquidlike. The critical value 
of temperature eT , providing transition of the system to the sliding friction, is defined by 
those quantities as the maximums of distribution function.  

Apparently, the increase of the sheared surfaces temperature eT  transforms 
lubricant to the sliding friction mode. It can be understood considering Eq. (8) that 
describes the damping oscillations. Here, the surfaces temperature is included only in 
expression for driving force f , which increases with growth of eT . As is known, the 
liquid can correspond to the oscillation mode with large amplitude, but solid can not. At 
the increasing value of effective force in (9) the amplitude of oscillations increases, and 
more long oscillation process is realized to the moment of establishment of the certain 
mode of friction in the system.  
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Fig. 1. The distribution function of shear stress for the second-order transition at 
2,0=g , 1,0== εσ ττ , 2,0=λτ , and 5=I . The curves 1, 2, 3 

correspond to the temperatures ,20,16,5=eT  respectively 
 

For studying the dynamics of change of friction modes it is enough to represent 
distribution ( )σP  by position of its maximum σ~ . This is achieved by the use of path 
integrals formalism [15], within the framework of which the extreme values ( )tσ=σ ~~  of 
initial distribution function (13) evolve in accordance with the effective distribution  

{ } ( )( )∫ σσΛ−∝σσ∏ dtt,~,~exp~,~                                    (17) 
where Onsager-Machlup function Λ , acting as the Lagrangian of Euclidean field theory, 
is the subject for determination.  

Equation (10) can be transformed to the form:  
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For finding of ( )t,~,~ σσΛ  dependence we write down the differential Langevin 
equation  
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d
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corresponding to Focker–Plank equation (18) [15]. Here, stochastic differential ( )tdW  
represents Winner process possessing properties of white noise:  

( ) ( )( ) dttdWtdW == 2,0 .                                  (20) 

The feature of stochastic equations is that differential ( )tdW  can not be obtained by the 

simple division of Eq. (19) by )2(2D . To that end it is necessary to pass from a 
random process ( )tσ~  to white noise ( )tx  related with the initial Jacobian 

( ) 2/1)2(2~/
−

=σ Dddx . Then substitution of Eq. (19) in the Ito stochastic differential  
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taking into account (20), leads to expression  
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Here, the terms are neglected whose order exceeds ( )( )2tdW . After reverse transition 
from white noise ( )tx  to the initial process ( )tσ~  the equality is obtained  
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where the stroke stands for differentiation with respect to σ~ . Plugging this expression 
into Gaussian  
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and comparing with (17) we arrive at Lagrangian  
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with potential energy  
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It is substantial that such form of potential energy U  does not coincide with effective 
potential (14). Consequently, for further considerations it is necessary to replace the 
expression U  (25) on ( )σE  (14). In this case Eq. (24) describes the system behaviour in 
accordance with distribution (13) obtained above.  

The system kinetics is defined by Euler–Lagrange equation  
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Within the white noise presentation the dissipative function has the simplest form 
2/2xR =  and is transformed to  
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with transition to the variable ( ) xD
2/1)2(2~ =σ . Substituting in (26) the equalities (24), 

(14), (27), we arrive at differential equation  
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Its study is described below based on the phase plane method ( )σσ ~,~ . 
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Let us consider the steady-states at first. Supposing in (28) 0~ =σ  the equation is 
obtained  

0)2(

)1(
=

D
D .                                                    (29) 

It coincides with the extremum condition of distribution (13). The distribution 
maximum corresponds to the minimum of effective potential, and the distribution 
minimum — to its maximum.  

Consider kinetics of the system using the phase portraits defined by equation (28). 
The shear stress distribution dependences ( )σP  are shown in Fig. 1 for the different 
modes of friction for second-order phase transition. The curves 1, 2, 3 correspond the 
regions of dry (DF), stick-slip (SS), and sliding (SF) friction. The phase portraits are 
presented in Fig. 2 corresponding to the curves of Fig. 1.  
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Fig. 2. The phase portraits corresponding to the parameters of Fig. 1: 
a – DF mode corresponds to the curve 1 in Fig. 1; b – SS – curve 2 in 
 Fig. 1; c – SF – curve 3  in  Fig. 1 

 
 
The region of dry friction (DF) (Fig. 2, a) is characterized by a presence of one 

singular point D, which corresponds to the maximum of probability ( )σP  at 0=σ . This 
point is non-standard and requires interpretations. It is located at the origin of 
coordinates, and phase trajectories is curved around it, so that the system never comes to 
the value 0=σ , i.e. this point is not stationary. Consider the system behaviour at the 
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arbitrary initial condition. According to the phase trajectories the system evolves to the 
zero value of stress. Thus, if in initial conditions the growth rate of stress is positive it, at 
first, decreases to the zero (during this time the stress increases). And then the stress 
value decreases asymptotically to the zero with the increase of its decrease rate. 
Presumably, the described situation meets the mode of explosive amorphization, at which 
the system transforms very rapidly in amorphous solidlike state. The circumstance that 
zero stress is never achieved testifies to divergence of probability ( )σP  at zero point. 
This is related with infinite growth of decrease rate of stress at going of the system to 

0=σ . Let us assume that the system reaches the point at which decreasing rate becomes 
critical. In such case the increase of stress value is expected, which is accompanied by 
the change of rate sign and transition of the system in a positive phase plane region. 
Further, again the decreasing of stress occurs, and the described situation repeats oneself. 
Alternatively, the rate sign does not change, and only its decreasing takes place. This 
moves the system on a neighbouring phase trajectory, along which it approaches to the 
zero stress more quickly. As a result, in course of time the oscillation mode of dry 
friction is set in the vicinity of point 0=σ  at the arbitrary initial conditions. At that the 
oscillations amplitude is small, and lubricant has solidlike structure.  

Phase portrait of the system, characterizing the region of stick-slip friction (SS), is 
shown in Fig. 2b. The three special points appear here: D, saddle N, and stable focus F. 
As well as above, point D is realized at the origin of coordinates and corresponds to the 
dry friction mode in the system. Saddle N meets the minimum of ( )σP , and is unstable 
stationary point. It is worth noting that at the initial value of shear stress on the right-hand 
side from point N and 0=σ , the sliding mode of friction is set in the system during time. 
If the initial value of stress appears on left-hand side from saddle N, the dry friction is set 
in similar case. Thus, point N separates two maximums of distribution function ( )σP . 
Focus F corresponds to the non-zero maximum of stress distribution function, i.e., it 
describes the liquidlike state of lubricant. The corresponding to this point damping 
oscillations mean that lubricant becomes more liquidlike, and more solidlike 
periodically. However, the stable sliding friction is set always. Presumably, these 
oscillations are conditioned by the presence of noise.  

The phase portrait corresponding to the sliding friction (SF) is shown in Fig. 2, c, 
which is characterized by one non-zero maximum of distribution function ( )σP . It is 
characterized by single singular point — the stable focus F corresponding to the stable 
sliding friction. This is confirmed also by large overexpansion of phase trajectories near 
it along axes of ordinates and abscissas. However, it is apparent that at the initial large 
value σ  the system does not reach the point F, and approaches asymptotically to the 
zero stress value. This circumstance implies that conditions can be realized, at which the 
system will be near to the regime of dry friction. As described above, at reaching the 
value of critical rate, its sign changes and becomes positive. It is seen from the phase 
portrait, that in such case the system will pass to the mode of stable sliding friction.  

Actually, the shear modulus, introduced (in terms of the relaxation time στ ) in 
Eq. (2), depends on the stress value. This leads to the transition of the elastic deformation 
mode to the plastic one. It takes place at characteristic value of the stress pσ , which does 

not exceed the value sσ  (in other case the plastic mode is not manifested). For 
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consideration of deformational defect of the modulus we will use ( )στσ  dependence 
proposed in [3], instead of στ . As a result, Eq. (2) takes the form:  
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where the relaxation time for the plastic mode Θη=τ σ /p  is introduced ( Gσσ τ≡η  is 

the effective viscosity, Θ  is the hardening factor), 1/ <Θ=θ G  is the parameter 
describing the ratio of tilts for the deformation curve in the plastic and the Hookean 
domains, 0

2 / GGg Θ=Θ  and sp σσ=α /  are the constants. Then, within the 
framework of approximation (6) the system (30), (3), and (4), as well as above, is 
reduced to equation (cf. (8)):  
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where the coefficient of friction γ , force f , amplitude of noise φ , and parameter m  
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According to the effective potential method [6], [12] – [14] we will obtain the Focker–
Plank equation (10) with coefficients )1(D  and )2(D :  
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( ) [ ]λ− τ+γ
γ
σ

= 21
2

2 ID  .                                       (36) 

 
 
In this case the more complex form for probability is observed and, as a result, the 

phase diagrams and portraits are more complex. Here, five different modes of friction are 
realized. Consider each of them separately. The ( )σP  dependences are shown in Fig. 3 
for the different modes of friction.  
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Fig. 3. The distribution function of shear stress for the first-order transition at 
1,0=== λε τττ p , 71 =θ− , 3,0=α , 4.0=θg , 5,4=I . The 

curves 1 – 5 correspond to the temperatures ,26,24,25.23,21,16=eT  
respectively 

 
Curves 1 – 5 correspond to the regions of dry (DF), stick-slip (SS), stick-slip and 

sliding (SS+SF), metastable and stable sliding (MSF+SF), and sliding friction (SF). The 
phase portraits are presented in Fig. 4 meeting the curves of Fig. 3.  

The phase portrait of dry friction region (DF) is similar to that is inherent in 
continuous transformation (Fig. 2, a). It implies, that DF regions are equivalent at the 
taking into account of the modulus defect and without it.  

Phase portrait describing the region of stick-slip friction (SS) is similar to the 
characteristic one for the SS region at continuous transformation (Fig. 2, b). Basic their 
difference is that here the trajectories around focus are considerably more elongated 
along both coordinates axes. It means the greater stability of sliding friction.  

The most complex region (SS+SF) is represented by the phase portrait shown in 
Fig. 4, a. The five singular points are realized here: D, saddles N, N ′ , stable focuses F, 
F ′ . As well as above, saddles correspond to the minimums of ( )σP  dependence. Point 
D meets the solidlike state of lubricant. Stable focus F determines the first non-zero 
maximum of probability. It is apparent that the oscillations are weakly pronounced 
around this point. In this mode lubricant represents the very viscous liquid, because in 
such type of fluid at presence of noise the oscillations are damped strongly. Actually, the 
point F corresponds to the small values of stress, and with its decreasing the lubricant 
becomes more viscous, and at 0=σ  it is transformed into the solidlike state. Thus, using 
phase portraits it is possible to give explanation to that the liquidlike state of lubricant, 
but not the solidlike one, corresponds to the large values of shear stress.  
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Fig. 4. The phase portraits corresponding to the parameters of Fig. 3: a – SS+SF 

mode corresponds to the curve 3 in Fig. 3; b – MSF+SF  – curve 4  in 
Fig. 3  

 

Focus F ′  meets the second non-zero maximum of ( )σP  function, and there are 
oscillations with large amplitude around it. This implies the fluidlike state of lubricant, 
and accordingly, sliding. This point is on large distance along abscissas axis from all 
others ones. This mode of friction is most probable only, since points D and F, 
corresponding to the dry and metastable sliding friction, have large stability and 
probability of realization also. From here the conclusion follows, that the system can 
undergo periodic transitions (stick-slip) between the modes corresponding to the points 
D, F, and F ′ . Since these modes are stable and separated by the pronounced minimums 
of distribution function ( )σP  (by saddles), the transitions between them is necessary to 
expect after large intervals of time.  

The phase portrait of MSF+SF region is represented in Fig. 4b. There are three 
singular points – stable focuses F, F ′ , and saddle N. The latter is similar to the 
described above saddles and meets the minimum of probability dependences on stress. 
Point F corresponds to the first maximum of distribution, which describes metastable 
sliding mode (MSF), and F ′  – to the second maximum, which defines stable sliding 
(SF). There are only insignificant oscillations around the focus F, however lubricant in 
this mode is less viscous liquid than in vicinity of point F ′  in Fig. 4a. At the origin of 
coordinates the singular point is absent, and the dry friction is not realized. Focus F ′  is 
similar to described in Fig. 4a, however, it’s "attraction" domain is more stretched along 
both axes, that means the larger fluidity of lubricant and stability of this mode. Therefore 
in comparison with the previous case here the arising of sliding friction is more probable 
(SF).  

SF region is represented by the phase portrait, which is similar to described at 
continuous transformation (Fig. 2c). Here, the one stable focus is realized F representing 
stable sliding friction (SF) characterized by oscillations in it’s vicinity. The basic 
difference is that in this case oscillations take place with large amplitude, that implies 
strong fluidity of lubricant and pronounced stability of such mode. However, as well as 
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in all above considered situations, in course of time in lubricant the stationary shear 
stress is set corresponding to the maximum of the initial distribution ( )σP .  

In basic equations (2) – (4) the shear stress σ  stands in the first power. However, 
in general case it’s exponent a  may be not integer, but fractional:  

ε+σ=στσ ga- ,                                                       (37) 
aT σ+ε=ετε )1-(- ,                                                  (38) 

( )tTTT aa
eT λ+σ+εσ−=τ 2)-(  .                           (39) 

Taking into account the additive noises of shear stress and strain, and the 
temperature of lubricant film it has been shown [5], that such system describes the self-
similar mode for which the characteristic scale of shear stress is absent [16]. Such regime 
is determined by the homogeneous distribution function  

( ) ( )σ= − PyyP a2 ,   sy σσ= .                                     (40) 
In particular, the value 5.12 =a  corresponds to the self-organized criticality mode, 

at which, unlike the phase transition, the process of self-organization does not require the 
external influence ( 0=eT ) and occurs spontaneously [5, 17].  

The study of equations (37) – (39) shows that phase portraits for similar regions 
repeat above considered qualitatively. Thus, there is one substantial difference. The 
fractional Lorenz system at 1≠a  and 0≠I  results in presence of the point D in phase 
portraits, which corresponds to the solidlike state of lubricant. In addition, variation of a  
leads to the complication of ( )σP  dependence, and as a result, to more complex form of 
phase portraits. Within the limits of determined friction mode at decreasing of a  the 
increase of abscissas of stable focuses is observed. Consequently, the weakening of 
fractional feedbacks in the Lorenz-type models result in the increase of lubricant fluidity 
and reducing of friction. However, in the systems described by fractional exponent a  the 
dry friction is realized always. Thus, it is impossible simply to assert that such systems 
more preferable to friction decrease than linear systems.  

The above consideration shows that increase of temperature of frictional surfaces 
eT , at presence of colored noise of lubricant temperature, can be accompanied by self-

organization of elastic and thermal fields leading to the mode of sliding friction. At 
setting of the sliding friction mode in the system the damping oscillations arise in the 
process of which the shear stress relaxes to the stationary value fixed by probability 
distribution. The amplitude of these oscillations increases with growth of stationary 
values of shear stress. It means that large shear stress σ  corresponds to the liquidlike 
structure of lubricant. The solidlike state of lubricant is described by the singular point D 
at the origin of coordinates that has complex character of stability and corresponds to 
divergency of probability ( )σP . The oscillations near this point are absent.  

For description of first-order transition the shear modulus defect is taken into 
account. It is shown that the change of value of the friction surfaces temperature eT  can 
transform the system from the mode of dry friction to the sliding one. At that the latter 
arises at two values of shear stress. Accordingly, the three singular points appear in phase 
portraits that define the stationary values of stress – non-standard point D at zero stress, 
and two stable focuses at non-zero ones. The interrupted (stick-slip) mode of friction can 
be realized as a result of transitions between solidlike, metastable and stable liquidlike 



A. Khomenko, I. Lyashenko 84 
lubricant states which are described by zero and non-zero singular points. Taking into 
consideration the nonlinear relaxation of shear stress and fractional feedbacks in the 
Lorentz system it has been shown that in phase portraits the singular point D is realized 
always, which corresponds to the solidlike state of lubricant and dry friction.  

The work is supported by the grant of Ministers Cabinet of Ukraine.  
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ВПЛИВ КОРЕЛЯЦІЙ ТЕМПЕРАТУРИ НА ФАЗОВУ  
КІНЕТИКУ ГРАНИЧНОГО ТЕРТЯ 
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В рамках моделі Лоренця для в’язкопружного середовища досліджено 

плавлення ультратонкої плівки мастила в процесі тертя між атомарно плоскими 
поверхнями. Флуктуації температури плівки мастила описують процесом 
Орнштейна–Уленбека. Побудовані фазові портрети, які відповідають різним 
областям динамічної фазової діаграми і визначають кінетику системи. Показано, 
що особлива точка, яка відповідає сухому тертю, має невизначений характер 
стійкості. Інші найімовірніші стани системи, що відповідають стійкому і 
метастабільному рідинному тертю, представлені на фазових портретах стійкими 
фокусами. Тому в системі можуть відбуватися затухаючі коливання до стійких 
станів. Велике продовження фазових траєкторій біля фокусів уздовж осей фазового 
портрета означає стійкість рідинного тертя. Оскільки максимуми функції 
розподілу, що відповідають стаціонарним режимам тертя, відокремлені один від 
одного вираженими мінімумами, переходи між ними відбуваються через великі 
інтервали часу.   

Ключові слова: в’язкопружне середовище, фазовий портрет, переривчастий 
режим тертя.  
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