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The effect of different solutes and solvents on the morphology of Galvanically deposited ZnO thin films 

is reported here. Hexagonal grains with c – axis orientation were obtained from aqueous Zn(NO3)2 bath 

(System A), whereas, the aqueous ZnSO4 bath (System B) yielded cages of  ZnO flakes on the xy plane. 

Almost spherical grains with smaller sizes were obtained from the DMF bath of Zn(NO3)2 (System C). The 

highest average roughness (Ra) was shown by the flake like morphology (107.11 nm) and the lowest by the 

spherical one (16.82 nm). The value of Ra was 21.5 nm for System A. Surface roughness is responsible for 

adsorbing the test gas, one of the most important factors influencing the sensitivity. Same thing is 

reflected here by the deposited films for methane sensing. At 300 C, System B showed maximum efficiency 

(89 %) and the minimum was 69 %, as shown by System C. On the other hand, System A showed an in-

between value of efficiency of about 75 %. The response time at 300 C was also lowest for System B, 

whereas, System A & C showed similar values. 
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1. INTRODUCTION 
 

ZnO is a direct and wide band gap semiconducting 

material, which is famous for its resourceful applica-

tions in the fields of solar cell window material and 

buffer layer, ultrasonic oscillator, piezo-electronics, 

transducers, thin film transistors and optoelectronics. 

The major role of ZnO in the form of thin film is as the 

sensor for reducing gases [1-4]. Now-a-days, most of the 

reducing gas sensors are based upon the oxides of Zn 

and Sn. One advantage of ZnO over other metal oxides 

is the availability of it in various nano-forms, like wire, 

belt, spring, sphere, comb, [5-8] etc. Moreover, for ZnO 

films, the control over the shape and size of the depos-

ited particles can be achieved in a comparatively easy 

way. As the sensing mechanism is directly related to 

the amount of gas adsorbed, so, depending on the mor-

phology of the prepared ZnO films, the sensing efficien-

cy may differ. In this work, we report a facile electro-

chemical route for the shape and size controlled deposi-

tion of ZnO thin films on transparent conducting oxide 

(TCO) coated glass substrates and their comparative 

sensing capability towards the hazardous gas methane.  

 

2. EXPERIMENTAL DETAILS 
 

2.1 Deposition Procedure 
 

There are many conventional and well described 

deposition techniques for ZnO thin films, like DC and 

RF sputtering, metal organic chemical vapor deposition 

(MOCVD), chemical vapor deposition (CVD), pulsed 

laser deposition (PLD), electron beam evaporation, 

spray pyrolysis, sol-gel technique and electrochemical, 

to name a few [9-15]. Among all these techniques, the 

electrochemical route has certain advantages, like se-

lective area deposition, minimum wastage of the pre-

cursor materials, good control over the reaction kinetics 

and deposition parameters, and off course, low con-

sumption of energy. Even, for some semiconducting 

thin films like ZnO and PbX (X  S, Se and Te) a fur-

ther simplified form [16-20] of the electrochemical 

technique can be applied, where, the inbuilt cell poten-

tial acts as the driving force for the deposition and no 

external bias is required as the conventional electro-

deposition technique. This follows the basic science of a 

Galvanic Cell and so has been designated as the “Gal-

vanic Technique”. 

To carry out the deposition of ZnO thin films with 

three different morphologies, we have prepared three 

electrolytic baths. The first bath contained 0.01 M 

aqueous Zn(NO3)2 solution (System A), the second one 

was composed of 0.01 M aqueous ZnSO4 solution 

(System B) and the third bath was prepared by dissolv-

ing solid Zn(NO3)2 in dry dimethylformamide (DMF) to 

make a 0.01 M solution (System C). Now, a properly 

cleaned TCO coated glass substrate and a 99.9 % pure 

metallic Zn rod were dipped in to the working solution 

to serve as the cathode and the sacrificial anode, re-

spectively for each system. When the two electrodes 

were short circuited externally, the sacrificial Zn rod 

dissociates as Zn → Zn2+ + 2e (E = + 0.76 V) and the 

released electrons reach the TCO cathode by following 

the external path to carry out the required cathodic 

reduction for the formation of the films. The optimum 

temperature for film deposition was found to be 60 C, 

30 C and 120 C, respectively for System A, System B 
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and System C. The depositions were carried out under 

constant stirring. System A and System C yielded pure 

ZnO thin films (as deposited), whereas, the as deposit-

ed films from System B was found to be composed of a 

mixed ZnO – Zn(OH)2 phase, which was then converted 

in to ZnO by post deposition annealing in air at 600 C 

for 15 minutes. The detailed discussion on the deposi-

tion procedure and mechanism has been reported earli-

er [16, 17] by the authors.  

 

2.2 Characterization Techniques  
 

The deposited films were characterized mainly for 

their structural and morphological aspects. X-ray 

diffraction (XRD) patterns were recorded by an X-ray 

diffractometer (SEIFERT 3000P) using Cu K  radiation 

of wavelength   0.15406 nm. The morphology and 

surface roughness of the films were studied by atomic 

force microscopy (AFM) (NT-MDT Solver Pro) in 

contact mode with a silicon probe having radius of 

curvature 10 nm, height 15 µm and the standard chip 

size was 1.6 mm  1.6 mm  0.4 mm. The gas-sensing 

prototype for the films was studied by measuring the 

change in resistivity between the two contacts made on 

the ZnO films, before and after passing the test gas 

methane. The contacts on the films were made by 

evaporating Pd by e-beam technique. The distance 

between the two contacts was 1 cm and the area of each 

contact was 0.3 cm 0.3 cm.  
 

3. RESULTS AND DISCUSSION  
 

3.1 Structural Analysis by XRD 
 

X-ray diffraction measurements of the films were 

carried out to ascertain the formation of ZnO and also to 

determine the phase and grain growth. From the XRD 

patterns (Fig. 1a-d), it can be seen that, pure ZnO films 

were directly obtained from System A and System C 

(Figs. 1a & 1d, respectively). On the other hand, System 

B yielded a mixed ZnO – Zn(OH)2 phase film (Fig. 1b), 

which then converted in to pure ZnO by annealing in air 

at 600 C for 15 minutes (Fig. 1c). For all the cases, poly-

crystalline grain growth was observed. Scherrer equa-

tion (grain size (D)  0.9 /( cos ) [where  is the wave 

length of the X-radiation (here 1.54056 Å),  is the value 

of full-width at half-maxima (FWHM) of the most in-

tense peak and  is the half of the diffraction angle of the 

corresponding peak]) has been applied to calculate the 

crystallite sizes of the films grown from System A and 

C, as the equation can only be applied for the crystals 

with regular shapes like spherical, hexagonal or cubic. 

The average crystallite sizes of the films calculated to be 

about 500 nm, for System A, and 100 nm for System C. 

The results have been matched with the JCPDS card 

No. 05-0664 for ZnO. The „*‟ marked peaks in the XRD 

patterns correspond to the lower lying SnO2 of the TCO 

glass. 

 

 
 

Fig. 1 – XRD patterns of the films deposited from (a) System A (b) System B (c) System B after annealing and (d) System C 

 

3.2 Morphological Analysis by AFM 
 

The AFM image for System A (Fig. 2a) revealed hex-

agonal columnar growth along c – axis, whereas, System 

B showed (Fig. 2b and after annealing, Fig. 2c) cages of 

ZnO flakes, grown on „xy‟ plane. Fig. 2d is the representa-

tive AFM image of the films obtained from System C, from 

which, the formation of almost spherical ZnO grains are 

evident. The average grain diameters as obtained from 

the AFM images were 400 nm, 2.0 µm and 100 nm, re-

spectively for System A, B & C. These values are in good 
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agreement with what we have obtained from the XRD 

measurements. No significant change in morphology was 

obtained after annealing for the films obtained from Sys-

tem B. So, it can be inferred that this „Galvanic‟ route is 

highly effective for the shape and size controlled deposi-

tion of ZnO thin films. The highest average roughness (Ra) 

was shown by the flake like morphology (107.11 nm) i.e. 

System B after annealing, and the lowest by the spherical 

one (16.82 nm). The value of Ra was 21.53 nm for Sys-

tem A. It is a well-known fact that, adsorption of gases 

increases with increasing porosity and surface roughness, 

and hence, there is a good chance of using these ZnO films 

as gas sensors. It is expected that the annealed films of 

System B with highest Ra value, could serve as a good gas 

sensor among the three, which is discussed in detail in the 

next section. 
 

 

 
 

 
 

Fig. 2 – AFM images of the films deposited from (a) System A (b) System B (c) System B after annealing and (d) System C 

 

3.3 Methane Sensor Prototype 
 

The sensor studies were carried out inside a closed 

glass tube (   10 cm  4 cm) with inlet and outlet for 

gases and it was placed coaxially inside a resistively 

heated furnace with 4 cm constant temperature zone. 

The temperature was controlled within 1 C using 

copper constantan thermocouple in-built in a precise 

temperature controller. Electrical connections were 

taken by using fine copper wire and silver paste for the 

metallization contacts. High purity (100 %) methane 

gas and IOLAR grade N2 (carrier gas) in desired 

proportions were allowed to flow to the gas-sensing 

chamber through a mixing path via mass flow 

controller & the mass flow meter, respectively. The 

mass flow rate and thus the relative concentrations of 

the gases were kept constant throughout the 

experiment. The gas pressure over the sensor device 

was 1 atmosphere during the experiment. The current–

voltage and resistivity characteristics of the sensors in 

presence and absence of methane was measured by a 

Kithley 6487 voltage source picoammeter; applying a 

constant voltage of 2.0 V. The percentage sensitivity to 

1 % CH4 concentration was recorded at different 

operating temperatures to find out the optimum 

temperature for highest sensitivity. The percentage 

sensitivity (S) is expressed as: 
 

 S  (Rg − Rair)/Rair  100 %  
 

Where, Rg and Rair are the resistivities of the film in 

presence of CH4 gas and dry air, respectively. The 

results obtained for different films are summarized in 

Table 1. Maximum efficiency of about 89 % was 

observed for the annealed film obtained from System B 

which in shown Fig. 3a. For all cases, maximum 

sensing efficiency was observed at 300 C, which was 

found to be the optimum temperature of operation for 

this sensing devices. This indicates that, a steady 

equilibrium between adsorption and desorption of CH4 
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had been established at this temperature. Increasing 

the temperature above 300 C, the rate of desorption of 

CH4 predominates over the rate of adsorption, which in 

turn, brings down the gas-sensing efficiency. It is 

evident from Table 1 that, as the surface roughness of 

the ZnO film increases, there is a significant increase 

in the efficiency and decrease in the response time 

(Fig. 3b). As the films obtained from System A and 

System C have no notable difference in their Ra values, 

their response times and efficiencies are also close. The 

highly porous nature of the deposited films from 

System B helps in better adsorption of the test gas, 

which also helps in increasing its efficiency. 
 

 

 
 

Fig. 3 – (a) plot for % efficiency vs. temperature and (b) response time vs. temperature for the methane sensor prototype 

fabricated using ZnO thin films with three different morphologies 
 

Table 1 – Appointment of special paragraph styles 
 

№ System Morphology 

Average 

grain 

diameter 

Surface 

roughness 

(nm) 

Response 

time (s) 

Recovery 

time (s) 

Efficiency 

(%) 

1 System A 
Hexagonal 

rod 
400 nm 21.53 12 25 74.75 

2 
System B 

(annealed) 

Flakes and 

cages 
2.0 µm 107.11 06 20 89.10 

3 System C Spherical 100 nm 16.82 12 35 69.10 

 

4. CONCLUSION 
 

A facile route for synthesizing shape and size 

controlled ZnO thin films on transparent conducting 

oxide coated glass substrates has been reported. A 

comparative study on the various structural properties 

of the deposited films and their morphology dependent 

methane sensing capabilities have been carried out. It 

has been established that, films with high surface 

roughness and porosity can serve as a better methane 

sensor prototype. The activation temperature was also 

found to be low for such sensors. 
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