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Few-layer graphene sheets were produced from graphite oxide (GO) chemical and thermal reduction. 

For the chemical reduction of GO as reducing agents were used hydrazine hydrate, hydroxylammonium 

chloride, sodium borohydride and sodium sulfite. The reduced material was characterized by elemental 

analysis, thermo-gravimetric analysis, scanning electron microscopy, X-ray diffraction, Fourier transform 

infrared and Raman spectroscopy. A comparison of the deoxygenation efficiency of graphene oxide suspen-

sions by different method or reductants has been made, revealing that the highest degree of reduction was 

achieved by thermal reduction and using hydrazine hydrate and hydroxylammonium chloride as a reduc-

ing agents. 
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1. INTRODUCTION 
 

Graphene sheets are planar monolayers of sp2-

bonded carbon atoms tightly packed into a two-

dimensional honeycomb lattice [1]. Due to the extraor-

dinary electronic [2], thermal [3] and mechanical [4] 

properties, graphene has been emerging as a fascinat-

ing material in electronics, optoelectronics, capacitor, 

and sensing applications. Large-scale production of 

graphene materials has been considered as rate-

limiting step in the evaluation of putative applications 

of graphene. In spite of producing high-quality gra-

phene sheets, the low productivity of micromechanical 

cleavage method makes it unsuitable for largescale 

applications. Reduction of GO, is considered to be an 

efficient approach to produce graphene sheets on a 

large scale. 

As far back as 1840 Schafhäutl [5] and then 

Marchand [6] at graphite treatment by various oxidis-

ing agents formation of light-coloured products ob-

served. Brodie in 1855 reported about the product of 

yellow-brown color, resulting in the wetted mixture of 

graphite and sodium chlorate by fuming nitric acid, and 

called its "graphitic acid" [7]. Staudenmaier in 1898 for 

graphite oxide production used KClO3 in a mixture of 

the concentrated sulfuric and nitric acids [8]. Boehm 

and coll. have shown that the basal planes of the gra-

phene sheets in graphite oxide are decorated mostly 

with epoxide and hydroxyl groups, in addition to car-

bonyl and carboxyl groups, which are located at the 

edges [9]. Has re-emerged to it an intense research in-

terest due to GO role as a precursor for the effective 

and mass production of graphene-based materials [10]. 

Currently, GO is prepared mostly based on the 

method proposed by Hummers and Offeman [11] in 

1958, where the oxidation of graphite to graphite oxide 

is accomplished by treating graphite with a water-free 

mixture of concentrated sulfuric acid, sodium nitrate 

and potassium permanganate. Reduction of the GO can 

be parted on physical and chemical methods. To physi-

cal methods concern thermal [12], microwave [13] and 

photo- [14] reduction. For the chemical reduction of GO 

to graphene used different reducing agents such as hy-

drazine [10], sodium borohydride [15], dimethylhydra-

zine [16], ascorbic acid [17], hydroiodic acid [18] and 

many other. 

In this work we used chemical and thermal reduc-

tion for obtaining few-layer graphene sheets. For the 

chemical reduction of GO as reducing agents were used 

hydrazine hydrate, hydroxylammonium chloride, sodi-

um borohydride and sodium sulfite. 

 

2. EXPERIMENTAL 
 

2.1 Synthesis and chemical reduction of GO 
 

GO was prepared using a modified Hummers and 

Offeman’s method from natural graphite [19]. After 

washing by water from sulfuric acid tracks the ob-

tained suspension of GO have treated on a sonication 

bath, and then it was refluxed with one of reducing 

agents: hydrazine (RGOG), hydroxylamine (RGOA), 

sodium borohydride (RGOB) or sodium sulfite (RGOS). 

RGO products was isolated by filtration on glass fun-

nel, washed copiously with water and ethanol, and 

dried in vacuum at 80 °C. The produced RGOG was 

heated at 900 °C in a flow of argon within 3 hours. 

 

2.2 Thermal reduction of GO 
 

The dried GO was thermally expanded to synthesize 

thermally reduced graphene oxide (TRGO) by rapidly 

heating it in a tube furnace. After the tube furnace was 

preheated to 900 °C, about ten milligrams of dry GO was 

placed in a quartz tube, through which flowed gaseous 

argon, and then the tube was rapidly moved into the mid-

dle heating zone of the furnace. Herewith the flow of ar-

gon removed obtained TROG from the heating zone of the 

furnace. The produced TRGO was heated in other tube 

furnace at 900 °C in a flow of argon within 3 hours. After 

thermal reduction GO, weight loss was about 60 wt%. 
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2.3 Material characterization 
 

All the samples were characterized by powder X-ray 

diffraction (XRD) using a DRON UM-2 Diffractometer 

(CuKα radiation, 0.05 degree resolution), Fourier trans-

form infrared (FTIR) spectroscopy using a Perkin-

Elmer Spectrum 100 FTIR spectrometer (0.5 cm–1 reso-

lution). Raman spectra were measured using a Horiba 

Jobin Yvon T64000 Raman spectrometer with an argon 

laser of 514.5 nm. C, H, N and O content analysis of the 

samples were carried out using a «Vario Micro cube» 

Elementar GmbH CHNS/O analyzer. The thermal 

properties of the samples were characterized by ther-

mogravimetery (TGA) using Simultaneous Thermogra-

vimetry Analyzer NETZSCH STA 409 C Luxx, and all 

the measurements were carried out under argon gas 

over a temperature range of 30–1000 °C with a ramp 

rate of 10°C min–1. Scanning electron microscopy (SEM) 

images were obtained using a scanning electron micro-

scope Zeiss LEO SUPRA 25. Surface area was meas-

ured using the BET method from nitrogen gas adsorp-

tion–desorption isotherms at 77 K by Surface Area An-

alyzer QUADRASORB SI (Quantachrome). 

 

3. RESULTS AND DISCUSSION 

In all the cases, a black solid precipitates at the end 

of the chemical reduction reaction. This may be attribut-

ed to the reduction of hydrophilic GO to hydrophobic 

graphene sheets, resulting in increased incompatibility 

with polar solvents. Chemical deoxygenation is related to 

removal of the oxygen functionalities and partial resto-

ration of the aromatic graphene network. SEM image of 

fluffy RGOGT and TRGO powders shows agglomeration 

of the exfoliated platelets of few-layer graphene sheets 

(Fig. 1). 

Characterization of GO and RGO shown in Table 1. 

Elemental analyses show an increase in C/O atomic ratio 

in the reduced material compared to the initial GO (2.7). 

In the number of RGOB, RGOS, RGOA, RGOG, TRGO 

C/O ratio increases to 4.29, 7.30, 9.62, 16.13, 43.49, re-

spectively. After heating RGOG at 900 °С in an argon 

flow (RGOGT) C/O ratio is increased to 45.45. All sam-

ples which were used in obtaining the nitrogen contain-

ing reduction agents (hydrazine or hydroxylamine) 

have nitrogen in its composition. It can be related to 

reaction of hydrazine and hydroxylamine with carbonyl 

groups of the GO (Wolff–Kishner-type reaction). 

Surface area measurement of the reduced GO 

sheets via nitrogen gas absorption yielded a BET value 

from 470 to 620 m2/g. However, it is lower than the 

theoretical specific surface area for completely exfoliat-

ed and isolated graphene sheets (~2,620 m2/g [12]), po-

tentially due to the agglomeration of the graphene ox-

ide sheets upon reduction. 

 

 

  
 

  
 

Fig. 1 – SEM images of RGOG (a), (b) and TRGO (c), (d) 
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Table 1 – Characterization of GO and RGO 
 

 Elemental analysis, wt% 
C/O 

Raman 

ID/IG 
SBET, m

2
/g 

C H O 

GO 49.3 2.4 45.1 1.46 0.96 - 

RGOB 60.8 1.7 18.9 4.29 1.10 560 

RGOS 79.3 1.1 14.5 7.30 1.11 470 

RGOA 81.8 1.1 11.3 9.62 1.26 490 

RGOG 89.2 0.7 7.4 16.13 - - 

RGOGT 91.3 0.8 2.7 45.45 1.27 510 

TRGO 90.8 1.0 2.9 43.49 1.26 620 
 

Thermogravimetric analysis (Fig. 2) shows curve 

changes of specimens weight as variation of 

temperature under an argon flow. Weight loss (~3 wt%) 

of the GO up to 120 °C could be primarily due to 

evaporation of water molecules held in the samples. A 

comparatively small amount (≤1 wt%) of weight loss in 

this temperature region indicates that RGO does not 

contain much water because of its hydrophobicity. 
While GO exhibited significant weight loss (~40 wt%, 

contributed by combination of evaporation of water and 

removal of labile oxygen functional groups) from 120 to 

350 °C, the RGOGT and TRGO did not lose weight, 

suggesting that a significant amount of the water and 

labile oxygen groups were removed by the reduction. 

Other RGOs lost up to 9 wt% in this region, indicating 

that the degree of reduction of RGOs was reduced by 

hydrazine (without heating), hydroxylamine, sodium 

borohydride and sodium sulfite is lower than that of 

RGOGT and TRGO. 
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Fig. 2 – TGA analysis of GO (1), RGOB (2), RGOS (3), RGOA 

(4), RGOG (5), TRGO (6) and RGOGT (7) 
 

In the FTIR spectrum of GO (Fig. 3, curve 1), the 

absorbtion peaks at ~3420 cm–1 can be assigned to the 

O-H stretching vibrations in the water and hydroxyl 

groups in the GO; the C=O stretching vibrations in the 

carboxyl group at 1733 cm–1; the C=C ring stretching at 

1624 cm–1; the O-H deformation from the hydroxyl 

groups attached to the aromatic graphene network at 

1407 cm–1; the C-O (epoxy) stretching at 1068 cm–1, and 

the C-OH stretching at 1228 cm–1. In the FTIR spec-

trum of RGOB, RGOS, RGOA and RGOG (curve 2, 3, 4, 

5, respectively) the intensity of the peaks for oxygen 

functional groups (1733, 1407, 1068 and 1228 cm–1) 

were decreased very much but did not disappear com-

pletely as is the case of RGOGT and TRGO(curve 6 and 

7). The absorbtion peaks related to skeletal vibration of 

the aromatic rings were observed in all samples of RGO 

but the peak position shifted from 1624 to 1560 cm–1 

with respect to GO. 
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Fig. 3 – FTIR spectra for GO (1), RGOB (2), RGOS (3), RGOA 

(4), RGOG (5), RGOGT (6) and TRGO (7) 
 

The changes of structure from GO to RGO by chem-

ical and thermal reduction are also reflected in the 

Raman spectroscopy. The Raman spectrum of the pris-

tine graphite, as expected, displays a prominent G peak 

as the only feature at 1580 cm–1, corresponding to the 

first-order scattering of the E2g mode [15]. In the Ra-

man spectrum of GO (Fig. 4, curve 1), the G band is 

broadened and shifted to 1603 cm–1. In addition there 

is a D band at 1354 cm–1, indicating the destruction of 

sp2 character and the formation of defects in the sheets 

due to extensive oxidation. The Raman spectrum of the 

RGO (Fig. 4, curve 2-6) also contains both G and D 

bands (at 1592 and 1346 cm–1, respectively); however, 

with an increased D/G intensity ratio (ID/IG) compared 

to that in GO (Table 1). Besides the highest value ID/IG 

achieved in the case of RGOA, RGOGT and TRGO. 

These observations further confirm the formation of 

new sp2 graphitic domains after the reduction of GO. 

Is known that pristine graphite exhibits a basal re-

flection (002) peak at 2θ = 26.6° (d-spacing = 0.335 nm). 

Upon oxidation of pristine graphite (Fig. 5, curve 1) the 

002 reflection peak shifts to the lower angle (2θ = 10.8°, 

d-spacing = 0.822 nm). The increase in d-spacing is due 

to the intercalation of water molecules and the for-

mation of oxygen-containing functional groups between 

the layers of the graphite. The XRD of RGOGT and  
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Fig. 4 – Raman spectra  of GO (1), RGOB (2), RGOA (3), RGOS 

(4), RGOGT (5) and TRGO (6) 
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Fig. 5 – XRD pattern of GO (1), TRGO (2) and RGOGT (3) 
 

TRGO show the appearance of a broad band cen-

tered at 19.3 and 19.0° (d-spacing = 0.470 and 0.462, 

respectively) corresponding to the stacking of graphene 

layers. The disappearance of reflection peak of graphite 

oxide and appearance of a broad band in the RGOGT 

and TRGO indicate the formation of few-layer gra-

phene sheets. Along with a broad band at 2θ = 19.3° in 

the RGOGT also was observed broad band at 2θ = 26.3° 

(d-spacing = 0.339 nm). Thus in RGOGT along with 

few-layer graphene sheets there is also multi-layered 

graphite. 

 

4. CONCLUSION 
 

The graphene sheets may find use in a variety of 

applications such as hydrogen storage and as an elec-

trically conductive filler material in composites. There-

fore the important problem is looking up of synthesis 

methods of graphene that can deliver large quantities 

of the material at low cost. This method may be the 

reduction of GO. In our work a comparison of the deox-

ygenation efficiency of graphene oxide suspensions by 

different reductants has been made, revealing that the 

highest degree of reduction was achieved using hydra-

zine hydrate and hydroxylammonium chloride. Howev-

er, in the samples was observed the presence of nitro-

gen in their composition, which is not removed even 

after heating at 900 °C. On the other hand the use of 

thermal reduction of GO also there is a high degree of 

reduction, but weight loss has compounded about 

60 wt%. 
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