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Using luminescent exciton traps, an efficiency of the exciton migration in J-aggregates of pseudoisocy-

anine dye in solutions has been investigated. Applying a modified Stern-Volmer equation for an analysis of 

the J-aggregates luminescence quenching by the trap, the quenching of 50% of PIC J-aggregates lumines-

cence at the ratio PIC/trap = 70:1 has been found. To increase the exciton migration efficiency, the J-

aggregate structure was improved by the formation of a "J-aggregate-surfactant” complex. It results in 

35% enhancement of the exciton migration efficiency in PIC J-aggregates. 
 

Keywords: J-aggregate, Exciton transport, Exciton trap, Luminescence quenching, Modified Stern-Volmer 

equation. 
 

 PACS numbers: 71.35. – y, 87.15.mq 

 

 

                                                           
*
 fylymonova@isma.kharkov.ua 

Aggregation of dye molecules in often accompanied 

by spectral shifts or new spectral bands appearing, due 

to strong interactions between the chromophores. Out-

standing example of the latter case is well-ordered lu-

minescent molecular assemblies called J-aggregates. 

Due to excitonic nature of electronic excitations, J-

aggregates reveal a number of unique spectral proper-

ties, one of which is exciton migration over hundreds of 

monomers [1-4]. Thus J-aggregates can be used as an 

optical antenna for energy delivery purposes [5, 6]. In-

deed, exciton properties of J-aggregates are similar to 

those of light-harvesting complexes (LHC), which pro-

vide extremely fast and efficient energy transport of 

the absorbed sun light to the photochemical reaction 

center of plants and photosynthetic bacteria [7]. 

Pseudoisocyanine (PIC) dye (Fig.1a) is the most inves-

tigated cyanine dye forming J-aggregates, which have 

attracted considerable attention because of their high 

nonlinear optical properties, ultrafast optical response, 

and large molecular hyperpolarizability arising from 

the actions of the aligned molecules [8]. Due to their 

remarkable physical properties, PIC J-aggregates have 

received continuous interest through the years. But 

despite such interest experimental data concerning the 

exciton transport in PIC J-aggregates are different and 

some times contradict each other. For example, 

Sundström et al. studying an exciton transport in 

pseudoisocyanine (PIC) J-aggregates by means of an 

exciton-exciton annihilation conclude of exciton migra-

tion over 2-5 104 molecules [9]. Möbius reports about 

exciton migration over 2600 PIC molecules based on 

Scheibe data of PIC J-aggregate luminescence quench-

ing by eosin molecules. And finally from direct observa-

tion of spatial extent of photobleaching Higgins and 

Barbara found that upper limit of exciton migration in 

PIC J-aggregates is ~ 50 nm (~ 125 molecules) [10].  So 

the purpose of present article is an alternative investi-

gation of exciton transport in PIC J-aggregates. In view 

of our previous experience, it was clear that the most 

promising way of introduction molecules / exciton traps 

to the J-aggregates of PIC is using Coulombic interac-

tion between molecules of PIC and traps. Therefore, 

anionic cyanine dye DiD-4CS (1,1'-di(3-sulfobutyl)-

3,3,3',3'-tetramethylindodicarbocyanine sodium salt) 

has been chosen as the exciton trap (Fig.1b). 
 

 
 

Fig. 1 – Structural formulas of the dyes: (a) PIC; (b) DiD-4CS 
 

The DiD-4CS dye is well dissolved in water and re-

veals quit narrow absorption ( max  640 nm) and lumi-

nescence ( max  665 nm) bands (Fig. 2). 
 

 
 

Fig. 2 – Absorption (blue) and luminescence (red) spectra of 

DiD-4CS dye in water 
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DiD-4CS dye addition to PIC J-aggregates solution 

results in some spectral change (Fig.3). First of all, 

there is sensitized luminescence of DiD-4CS ( max  679 

nm) which appeared at the excitation ( exc  530 nm) 

within the J-aggregates absorption band (called J-

band, max  574 nm), whereas PIC J-aggregates lumi-

nescence band ( max  574.5 nm) is quenched (Fig.3b). 

In luminescence excitation spectrum of DiD-4CS 

( reg  685 nm) the band corresponding to J-band is 

clearly seen which intensity is much higher comparing 

with band corresponding to its own absorption band 

( max  655 nm) (Fig. 3a). So we could to conclude effec-

tive energy transfer from J-aggregates to DiD-4CS as a 

result of their strong interaction. 
 

 

 
 

Fig. 3 - . a) Absorption (green) and the DiD-4CS luminescence 

excitation (purple, λreg  690 nm) and b) luminescence 

(λexc  530 nm) spectra of PIC J-aggregates with the DiD-4CS 

trap (PIC/trap   = 20:1) (blue) and without the trap (red)  
 

So to investigate the exciton migration efficiency in 

PIC J-aggregates the concentration of DiD-4CS was 

varied. The increase of the DiD-4CS portion leads to 

the redistribution of J-band and DiD-4CS luminescence 

band intensities (Fig.4). Since J-aggregate lumines-

cence quenching and sensitized DiD-4CS dye lumines-

cence are observed even at very small ratio PIC/DiD-

4CS  1000:1 (Fig.4), we consider DiD-4CS to be a very 

effective exciton trap. 

To find the efficiency of the exciton transport in the 

PIC J-aggregates, the luminescence quenching was 

analyzed using the Stern-Volmer equation [11]: 
 

 F0/F  1 + KSV[Q], (1) 

where F0 and F are the J-aggregate luminescence in-

tensities in the absence and presence of the trap, re-

spectively, [Q] is the quencher concentration and KSV is 

the Stern-Volmer constant. The value 1/KSV gives us 

the concentration of the trap that quenches 50% of the 

J-aggregate luminescence [11].  
 

 
 

Fig. 4 - Luminescence spectra of the J-aggregates with the 

DiD-4CS trap at different PIC/DiD ratios 
 

 

 
 

Fig. 5 – (a) Stern-Volmer and (b) modified Stern-Volmer plots for 

PIC J-aggregate luminescence quenching by the DiD-4CS trap 
 

The Stern-Volmer plot does not follow the linear 

law and shows downward curvature toward the X-axis 

(Fig.5a). Such behaviour points to an existence of exci-
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tons, which are not accessible to the trap, and is char-

acterized by the modified Stern-Volmer equation [11]: 
 

 0

0

1 1

[ ]q SV q

F

F F f K Q f
, (2) 

 

where fq is the fraction of the initial J-aggregates lumi-

nescence, which is accessible to the exciton trap. The 

modified Stern-Volmer plot is appeared to be linear and 

yields 1/fq as the intercept and 1/(fq·KSV) as the slope 

(Fig. 5b). So, we obtain fq  0.75, i.e. about 80% of exci-

tons is trapped by DiD-4CS. Stern-Volmer constant is 

KSV  1.4·105 M–1, so taking into account that the con-

centration of PIC in a binary solution is 5·10–4 M, we 

obtain that 1 DiD-4CS molecule quenches 50% lumi-

nescence of 70 PIC molecules forming the J-aggregate. 

This value appeared to be unexpectedly low. Regarding 

to different estimates of exciton migration in PIC J-

aggregates, namely 104 molecules [9], 103 molecules [1] 

and 102 molecules [10], the result obtained corresponds 

to the smallest one.   

"J-aggregates – surfactant” complex. The ques-

tion arises can we increase the exciton mean free path 

in J-aggregates? It could be supposed that the main 

parameter, which may affect the exciton transport, is 

structural perfection of molecular chain or minimal 

static disorder. Recently, it was found that formation of 

a “J-aggregate-surfactant” complex could lead to de-

creasing static disorder in a number of J-aggregates 

[12]. So, it was interesting to analyze how this complex 

formation will affect the exciton transport in PIC J-

aggregates.  

The DiD-4CS sensitized luminescence intensity is 

revealed to be much intense in the J-aggregates-

surfactant complex (Fig.6).  

The Stern-Volmer plot of J-aggregate luminescence 

quenching by the DiD-4CS trap in the presence of CPB 

does not follow the linear law (Fig.7) and the modified 

Stern-Volmer equation (2) was used.  

We have obtained next values: fq  0.9, KSV  1.9·105 

M–1. Accordingly 1 DiD-4CS molecule quenches 50% 

luminescence of 95 PIC molecules forming PIC J-

aggregate. So, the surfactant shell formation around 

the J-aggregates indeed resulted in increasing 

efficiency of exciton transport in PIC J-aggregates 

about on 30%, but this increasing wasn’t significant 

and we still stand within the lowest estimation of 

exciton migration ability.  

 
 

Fig. 6 – Luminescence spectra of the J-aggregate with the 

trap at different PIC/DiD-4CS ratios in the presence of CPB 
 

 
 

Fig. 7 – (a) Stern-Volmer and (b) modified Stern-Volmer plots 

for PIC J-aggregate luminescence quenching by the DiD-4CS 

trap in presence of CPB surfactant 
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