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A method of production conductive silver tracks on thermally sensitive polymer (BOPP) was offered, 

involving plasma for preprint polymer surface activation to enable better adhesion properties and post-

print selective etching to reduce amounts of polymer and raise electroconductivity. Inkjet, spin coating, 

and roll-blade coating were the methods of application of silver nanoparticle inks. We report to achieve two 

magnitudes lower sheet resistance of silver thin film with no effect on polymer substrate. This method with 

little modification could be adopted for production of flexible electronics on highly thermally sensitive pol-

ymers. 
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1. INTRODUCTION 
 

Flexible electronics is the electrics built on flexible 

substrate, for example plastic [PET, PP], fabric, paper 

and metal foil. The beauty of this technology is the flex-

ibility, lightweight and durability. Recently, it attracts 

a growing research interest, due to its big potential of 

substantial cost reduction through maskless processing 

or Roll-to-Roll production of low-cost, and disposable 

electronics applications. To date, it mainly relies on two 

fabrication strategies: one in which substrates bearing 

thousands of Field-effect Transistors (FETs) are bonded 

to plastic by transfer printing or pick-and place meth-

ods [1]; another in which FETs are prepared directly on 

the target substrate by several coating, curing and lith-

ographic steps [2,3]. Rubber stamping, embossing and 

ink-jet printing reduce the number of such fabrication 

steps. Feasible products based on printable electronics 

might include ultra cheap radio-frequency identification 

tags, inexpensive and disposable displays/electronic paper, 

interior interconnections, parts of an electronics assembly 

(e.g PWB, phone chassis etc.), sensors, memories, and 

wearable user interfaces. The main challenge of such op-

portunity is to provide sufficient quality of interconnecting 

traces by appropriate materials manipulation and sin-

tering, more precisely appropriate material deposition, 

process control and sufficient electric conductivity of 

printed interconnections. 

Metal nano-inks are currently involved in every 

printing method for production of printable electronics, 

e.g. flexography, offset, gravure, inkjet and screen 

printing [4]. They consist of a colloidal suspension of 

nanometer-sized metal particles coated with a thin sta-

bilizer shell. Very small particle sizes result in their 

ability to sinter at exceptionally low temperatures of 

10 % of the melting temperature compared to their 

bulk counterparts, due to their high surface area to 

volume ratio. Nanogold and silver are dispersed in the 

presence of organic stabilizers such as PVP which also 

happens to be a reducing agent. The molecular weight 

of this organic chemical ranges between 10 000 and 

60 000, and it serves as a dispersing agent to separate 

metal ions from each other [5]. PVP is dielectric. There-

fore, if its amount in the ink is too significant, it can 

decrease electro conductivity of printed nanometal lay-

ers. Generally, after a nano-ink has been printed and 

cured, upon solvent evaporation, it forms a continuous 

conductive thin film comprising the printed feature. 

Cure is a necessary step in establishing electrical contact 

in the feature, since the ink is essentially an insulator 

in its as-dried state. Raising the temperature above 

that required for solvent evaporation initiates polymer 

flow, allowing the stabilizer shell to move away from the 

interparticle regions, establishing contact between metal 

particles. As the temperature is raised above 100 C, 

the conductivity increases and the film becomes me-

chanically robust. Particulate materials have been 

shown to coalesce and form continuous features using, 

for instance, conventional heating [6], LASER sintering 

[7], exposure to microwaves or UV [8], and high temperature 

plasma sintering [9,10]. Isothermal sintering is the 

most common way these days, to the best of our 

knowledge. However, these techniques are not suitable 

for common polymer substrate materials due to the 

large overall thermal energy impact. Besides thermal 

sintering, plasmas have been shown to densify particu-

late materials, but also process thermally vulnerable 

materials in etching and sintering [10]. PVP with add-

ed acidic dye has been successfully etched by plasma 

before. Reinhold [11] et al. offered low pressure plasma 

sintering of inkjet printed silver tracks. This process 

was intended for thermally sensitive polymers. They 

reported one magnitude higher resistance of applied 
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silver layer then that of a bulk silver. But this method is 

not suitable for PP/BOPP printable electronics, as during 

inkjet printing process the substrate was heated to 

120 C to stimulate solvent evaporation. In our case it’s 

impossible since PP decomposition temperature is below 

90 C. Consequently, PP-based electronics requires sol-

vents with lower evaporation temperatures as well.  

Additional problem while printing on polymer sub-

strates has always been lack of adhesion on the border 

ink composition – polymer film. Low-pressure plasma is 

known to be one of the methods for preprint polymer 

surface activation to achieve better adhesion properties. 

However, to our knowledge little research was conducted 

on whether this method is applicable for printable elec-

tronics and conductive ink compositions, in particular.  

In this contribution we evaluate low-pressure argon 

and oxygen plasma exposure polymer surface activa-

tion method before applying silver nanoparticle inks 

with PVP as stabilizer by roll-blade, spin-coating and 

inkjet printing methods on BOPP substrate; plasma is 

then used as post print method for selective sintering of 

silver nanoparticles and simultaneous PVP etching to 

increase layer’s electro conductivity.  

 

2. EXPERIMENTAL 
 

Bi-axially oriented polypropylene (BOPP), polyethylene 

(PE) (both 40 m thick), and microscopy slides were 

used as substrates, all cleaned prior to experiment ul-

trasonically in ethanol, following deionized water. Pre-

liminary plasma treatment was conducted on polymer sub-

strates in a stainless-steel vacuum chamber as Figure 1 

shows. The dimension of the vacuum chamber is 

500 × 9 550 × 9 350 mm. A unipolar pulsed mid-

frequency (40 kHz) generator was employed as the 

power source, where the 20 % duty cycle was set up on 

the whole process. The diameter of upper and bottom 

electrodes is 250 mm, and the distance between them is 

50 mm. Argon (Ar, 99.99 %) and oxygen (99.999 %) 

were two activation gases. In all experiments the base 

pressure and averaged discharge power were kept con-

stant at 8.0 Pa and 75 W, respectively. Time was varied 

between 30 and 300 sec. Water contact angle (and sim-

ultaneous inkjet printing) was measured 20 min., 

2 hours and 24 hours after treatment. Next to subse-

quent drying 15 hours in 45 C adhesion was evaluated 

utilizing 3M tape for splitting method. Applied scale 

was from 1 to 5 (1  poor, 5  excellent). 

Nano-silver solvent-based ink for inkjet printing 

process was prepared, containing 17 wt% of silver, with 

a particle diameter between 80 and 100 nm. PVP 

(1.1 wt%) was used as a stabilizer; and mixture of eth-

anol (24.6 wt%), propanol (24.6 wt%) and ethylenglycol 

(32.7 wt%) created ink solution. Inkjet printing was 

performed using Epson ME office 70 printer. Roll-blade 

coating was done manually by roll-blade with diameter 

10 mm and line frequency 2 lines/mm. Estimated layer 

thickness was 20 µm. Ink was also spincoated between 

800 and 1000 rpm, and after drying ink layer was on 

the order of 500 nm.  

 
 

Fig. 1 – Schematic diagram of plasma setup 
 

Best parameters of plasma surface pretreatment 

were applied on BOPP substrate for plasma etching 

and sintering experiment together with microscopy 

slides (roll-blade coating). Weight of ink was measured 

by Sartorius BT 125D (Shanghai Liangheng IM & EX 

Co., Ltd.) before and after plasma treatment. Same plasma 

set-up was used for etching PVP and sintering silver 

nanoparticles. We varied pressure and discharge power 

from 3.0 Pa to 10 Pa and from 30 W to 200 W, respec-

tively. Sheet resistance was measured by four-point 

probe measurement (Guangzhou Four-point Tech Co, 

Ltd). Surface topographies of silver layers were imaged by 

a scanning electronic microscope (SEM), Shimadzu SS-

550 (Japan), before and after plasma treatment. X-Ray 

diffraction (XRD) data were recorded using a Rigaku 

D/Max-gB diffractometer at room temperature. Step scans 

were conducted from 2  to 80  with a step size of 0.02 .  

 

3. RESULTS AND DISCUSSION 
 

3.1 Preprint plasma treatment 
 

Polymer lines 15 × 5 cm were placed in the middle 

of grounded electrode. After air was pumped out of vacu-

um chamber, and pressure reached 4 Pa, argon or oxy-

gen were fed with flow rate 5 sccm. We experimented with 

both gases. Inert gases normally do not result in the 

deformation of the polymer substrates, in contrast to 

oxygen. But adhesive properties strongly depend on 

how well substrate’s surface is modified. Consequently, 

research of how feeding gas for plasma generation in-

fluences polymer’s printability was advisable.  

A pattern was designed that contained both lines 

for conductivity checks (see Fig. 2a) and solid printed 

100% black area for adhesion evaluation (see Fig. 2b). 

We have observed that the more time has passed after 

plasma surface pretreatment, the worse was the quality 

of printed images. After 24 hours there were ink flows 

on the substrate immediately in the printer. Adhesion 

strength decreased in the same manner as printing quality. 

Best adhesion results were received after oxygen plasma 

treatment for 5 min (see Fig. 3). These results homologate 

with the common view in packaging industry that printing 

should be conducted right after surface pretreatment for 

better results. Therefore, machines for printing on pol-

ymer substrates are always equipped with surface acti-

vator, placed before the first printing section. 
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Fig. 2 – Inkjet printed nanosilver ink pattern ready for adhesion 

measurement (a), and after splitting evaluation method (b) 
 

 
 

Fig. 3 – Influence of the time after treatment on PE adhesive 

properties 
 

None of the printed or coated features showed con-

ductivity. It was due to the low concentration of silver 

nanoparticles in solution. Another reason was presence 

of PVP on the substrates. As a stabilizer with dielectri-

cal properties it prevented nanoparticles from forming 

homogenous conductive layer. So in order to receive 

features with lower resistivity post print treatment was 

necessary.  

 

3.2 Post print Plasma Etching and Sintering  
 

For research on whether low-pressure plasma can 

successfully etch thin PVP film we prepared water dis-

persion of app. 5 wt%. It was applied on microscope 

slides and treated in plasma (O2 and Ar; 30 sccm; 30 W; 

16 Pa). Weight of samples was measured after cleaning, 

after drying of PVP dispersion (7 min in 45 C) and 

after plasma treatment to calculate the etching rate. 

Oxygen plasma showed higher etching speeds (65 g/h) 

than argon (36 g/h) plasma. However, although for 

this reason oxygen seemed like a natural choice for the 

purposes of nanosilver layer etching, first experiments 

with ink (see Fig. 4a) proved that oxygen plasma oxi-

dizes silver on the surface. Color of treated in oxygen 

plasma samples became dark brown. On the other 

hand, samples treated in argon plasma attained light 

silver color instead of initial gold. To make sure of our 

hypothesis we did X-ray diffraction (XRD) crystallog-

raphy analysis (see Fig. 4b). Results fully corresponded 

with reported before data for oxidized silver. These 

samples also showed no conductivity, so final decision 

was made to use only argon as feeding gas for plasma 

generation. 
 

 
 

a 
 

 
 

b 
 

Fig. 4 – Oxygen plasma treated nanosilver ink – visual effect 

(a), and its X-ray diffraction pattern (b) 
 

Our purpose was to discover the most suitable plasma 

treatment characteristics to achieve highest possible elec-

tro conductivity. We experimented with discharge power 

and pressure (see Fig. 5) during etching and sintering in 

vacuum chamber. Results suggest treating printed sam-

ples in pressure of 9.5 Pa (20 sccm Ar flow rate) at 75 W 

discharge power. With higher discharge powers total en-

ergy impact on substrates was too high for PVP; with low-

er discharge powers plasma sintering produced little effect 

on applied layer’s resistivity. However, even under these 

conditions inkjet printed features showed no conductivity. 

We have printed up to three layers and did plasma sinter-

ing after each print based on previous reports [11], but it 

has proved to be insufficient. We expect though that this 

is mainly due to low concentrations of silver in the ink. 

Resistance was measured on the whole surface of samples 

coated by roll-blade and spin coating.  

To make sure of conductive contents on the surface 

after plasma sintering we have analyzed it with XRD. 

The results are depicted in Fig. 6, showing a clear face-

centered cubic (fcc) crystal structure of bulk silver with 

good agreement to theoretical lattice parameters. 

Broadening can be also seen in the bottom of the (100) 
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peak as an indication of the presence of residual unsin-

tered nanoparticle material, PVP. 
 

 
 

Fig. 5 – Influence of discharge power of plasma on resistivity 

of ink layer under various pressure conditions  
 

 
 

Fig. 6 – X-ray diffraction pattern of Argon plasma treated 

nanosilver ink  

 

SEM images in Fig. 7 depict the effect of plasma 

sintering on silver nanoparticle layers deposited by 

inkjet process two times and sintered after each print. 

It can be observed that plasma etches PVP and slightly 

melts silver that tend to form homogeneous layer. 

However, the concentration is not enough to form such 

layer on entire surface of ink application. We report that 

adhesion after second plasma sintering on polymer sub-

strates is improved and evaluated as “excellent” in eve-

ry case.  
 

 
 

Fig. 7 – Ink-jet printed (2 layers) of silver nanoparticle ink 

with no plasma treatment (a), and Ar plasma treatments after 

each print (b)  

 

4. CONCLUSIONS 
 

We have evaluated an alternative and selective low 

pressure polymer surface activation and sintering 

method for inkjet printed colloidal silver inks on ther-

mally sensitive polymer substrates, without affecting 

it. The process yields comparable conductivities to con-

ventional heating methods. The application of the pro-

cess presented here may be employed in printed elec-

tronics, where conductive features are manufactured 

onto common polymer substrates that have a relatively 

low Tg.  
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