
PROCEEDINGS OF THE INTERNATIONAL CONFERENCE  

NANOMATERIALS: APPLICATIONS AND PROPERTIES 

Vol. 4 No 1, 01FPM06(4pp) (2015) 

 

 
2304-1862/2015/4(1)01FPM06(4) 01FPM06-1  2015 Sumy State University 

Edge States and Magnetization in Bernal-Stacked Trilayer Zigzag Graphene Nanoribbons 
 

Juan Antonio Casao-Pérez* 
 

Electronics Engineering and Communications Dpto. University of Zaragoza, María de Luna 3, 50018 Zaragoza Spain 
 

 (Received 30 June 2015; published online 29 August 2015) 

 

We have used a tight-binding Hamiltonian of an ABA-stacked trilayer zigzag graphene nanoribbon 

with -alignment edges to study the edge magnetizations. Firstly, in the neutral system we analyzed a 

magnetic state in which both edge magnetizations reach their maximum value; and is characterized by an 

intralayer ferromagnetic coupling between the magnetizations at opposite edges. The band structure and 

the location of the edge-state bands are calculated in order to understand the origins of the edge magneti-

zations. We have also introduced an electron doping so that the number of electrons in the ribbon unit cell 

is higher than in neutral case. As a consequence, we have obtained magnetization steps and charge accu-

mulation at the edges of the sample, which are caused by the edge-state flat bands.. 
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1. INTRODUCTION 
 

Theoretical research on the electrical and magnetic 

properties of nanostructures based on monolayer [1-5], 

bilayer [6-8] and multilayer graphene [9-12] as well as 
experimental developments [13-15], have been carried 

out in order to use these properties in future applica-

tions. Special attention has been directed to analyzing 

the formation of the magnetic moments which are creat-

ed by the localized edge states, and to how to control 
their magnitude. So, in monolayer graphene nanoribbons 

(MGNR) this magnitude has been (a) driven by the car-

rier density using gate doping [2]; (b) analyzed including 

nonlocal exchange effects [4] and (c) defined and con-

trolled by the chirality angle and the chemical potential 
in chiral MGNR [3,5].  In bilayer zigzag graphene nano-

ribbons (BZGNR), the edge magnetization can be con-

trolled by a transverse [7] or perpendicular [8] electric 

field applied to the ribbon.  In multilayer structures, the 

density functional theory [10] and tight-binding Hamil-
tonians [11] have been used to study the dependence of 

the energy gaps and the edge magnetization on the type 

of edge alignment, the type of stacking (ABA or ABC) 

and the number of layers; furthermore, to understand 

how these properties are modified by an electric field 
perpendicular to the layers, and to see the unbalanced 

edge modes in gated trilayer GNR [12]. 

Here, we focus on the magnetic states of a Bernal 

stacked trilayer zigzag GNR with  alignment edge [10]. 

The intralayer and interlayer couplings between the edge 

moments can be ferromagnetic (FM) or antiferromagnetic 

(AF), and we study how they depend on doping. We work 

with a tight binding Hamiltonian that includes the effects 
of the interlayer hoppings 1 and 3 [15-17], the last one 

responsible for the trigonal warping. The Hubbard inter-

action is considered in the mean field approximation 
(MFA) [18], and only collinear solutions are studied. 

 

2. THEORETICAL MODEL 
 

In Figure 1, an ABA-stacked trilayer zigzag gra-

phene nanoribbon (Bernal stacking TZGNR) with  

alignment edges along x axis, is shown. It is formed 

with Ny (even) zigzag chains across the ribbon (y direc-

tion), so that the ribbon unit cell (ruc) contains 6Ny 

atoms.  In this stacking, the central layer (layer 2 in 
Fig. 1) is a symmetry plane, thus the analysis becomes 

simpler. We describe this structure with a collinear 

single band Hubbard Hamiltonian in the MFA which 

includes the in-layer nearest neighbor hopping t; the 

in-layer next-nearest neighbor (nnn) hopping t’, and we 

use t = 0.1t [19]; 1, the inter-layer coupling between 

atoms A1-B2 and B2-A3 which are one above the other; 

3, the inter-layer coupling between atoms B1-A2 and 

A2-B3, and we use 1  3  0.2t [15,16]; and U, the on-

site Coulomb repulsion energy.  
 

 
 

Fig. 1 – Bernal stacked trilayer zigzag graphene nano-

ribbon with -alignment edges.  
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Because of the translation symmetry along the x axis, 

we transform the Hamiltonian H into k-space using 

 1 ikma
klmn lknc N e c 

    , where c is the a or b op-

erator and a is the lattice constant. ( )lmn lmna b 
   are the 

creation operators of electrons respectively at layer l 
(l  1,2,3), site mn with spin  in sublattice   A 

(  B); m  1,…, N, with N specifying the length of the 

ribbon and n  0, 1, …, Ny  1 , with Ny the number of 6-

atom elemental cells in the ruc. 
, ,A lkn lkn lknn a a  

  is the 

number operator and , ,lknn   is its mean value, so

 , , , , ,1 kl n lknn N n     . Then, we can write  

,
k

k

H H 
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   [11,12,15-17], with 
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In order to solve Hk , an initial conjecture for , , ,l nn   

is given. Then, the eigenenergies  E k  and eigen-

kets k  for the single particle Hamiltonian are com-

puted; so that   1  pkH k E k k      and 
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with   1,…,Nat, 6at yN N  is the number of atoms in 

the ruc; and the boundary conditions  ; 0 l yk N    , 

 ; 0 l yk N    ,  ; 1 0 l k     and  ; 1 0l k     

for every l, k, , .  Because of the time reversal sym-

metry we consider the interval 0 ≤ ka  , and discre-

tize it in 1601 points. At T  0 K we have the self-

consistent condition 
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where nruc is the number of electrons in the ruc; at half-
filling nruc  Nat. So, for a given nruc we are filling the 

energy levels in increasing order of energy up to the 

self-consistent condition is satisfied. Then, new concen-

trations , , ,l nn   are computed, and a new Fermi level 

EF is also computed, which is equal to the highest occu-

pied energy level. This resolution procedure is repeated 

until convergence is reached. 

 

3. RESULTS AND DISCUSSION 
 

When U  0 we find bands of zero energy for 

2/3 < ka ≤ , which correspond to the edge states [16]. 

When U is switched on, these flat bands give rise to a 

magnetic instability, and according to the Stoner 

criterion for itinerant magnetism a magnetic ground 
state is expected to be reached. We use U  1.2t [1,4]. 

Depending on the starting configuration for , , ,l nn  , 

different types of solutions are obtained; and these 

solutions can be classified taking into account the 

intralayer and interlayer couplings between the edge 

spin polarizations [8]. Using this criterion, we have 

used five different types of starting conditions:  

1) 20 20A A
m n




20
0

A
n


  , mB2,Ny–1 > 0, mA1,3;0 > 0 

and mB1,3;Ny-1 > 0; that is, FM intralayer and FM 
interlayer; 2) mA20 > 0, mB2,Ny1 < 0, mA1,3;0 > 0 and 

mB1,3;Ny-1 < 0, AF-FM; 3) mA20 > 0, mB2,Ny–1 > 0, mA1,3;0 < 0 

and mB1,3;Ny–1 < 0, FM-AF; 4) mA20 > 0, mB2,Ny–1 < 0, 

mA1,3;0 < 0 and mB1,3;Ny-1 > 0, AF-AF; and  

5)    , , , , , ,
1 2 ruc atl n l n

n n n N
  

   , no magnetic.  

We have made a study of the spin moment of the six-

atom elemental cell given by , , ,
,ln l n l n

m n n   
   

n  0, 1, …, Ny  1, as a function of the ribbon width. 

We have focused on the FM-FM solution, because in 
this solutions mn  0 and mn  Ny1 reach their 

maximum value. 

First, we consider neutrality charge, so that 
nruc  Nat.  Using the initial condition 1), the algorithm 

always converges to a FM-FM solution, and the results 

are shown in Figure 2.  In Fig. 2a, the spin magnetic 
moments mn at n  0, 1, 2; Ny  1, Ny  2 and Ny  3 are 

represented as a function of the ribbon width Ny (in units 

of µB). We clearly see that the edge magnetization 

saturates for low values of width, as it happens in 
monolayer zigzag GNR [5]. The fact that mn, n  0,1,2,… 

is, practically, equal to the corresponding ones at the 

opposite edge, is a consequence of the occupation and the 

location of the 6 bands of spin-up edge states, as 

discussed below. By using an ABA-trilayer ZGNR we 

have notably increased the spin magnetic moment of the 

cells at the edges. The reason is that the cell contains 

three  atoms  of  the  same  type;  two  of  them,  by 

symmetry, contribute to the cell spin moment with the 

same magnitude, and the spin moment of the third one 

is aligned with the one of the two other previous atoms.  
We fix Ny  24, and in Figure 2b we show the energy 

bands of the spin-up and spin-down states, where we 

clearly see the 6 bands of edge states of spin up, which 

are completely occupied; and the 6 bands of edge states 

of spin down, which are totally unoccupied (above the 
Fermi level, EF  0.714 ). As expected, these edge states 

arise for 2/3  ka   [8,10,16,18]. In order to see the 

location of these edge bands with spin up, for every band 
 and every 6-atom elemental cell position n, we have 

computed  
2

, ,2 /3 ,
 ;  l ka l

k n   
    . From the results 

we deduce 
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(a) 

(b) 
Fig. 2  a) Spin magnetic moment at the edge cells n  0, 1, 2 

(*-) and n  Ny  1, Ny  2 and Ny  3 (o-) in the FM-FM 

solution, as a function of width Ny. b) Energy bands E  

(continuous line) and E  (dashed) in the FM-FM solution 
 

that three bands are mainly localized at edge n=0 (say 

Right) and the other three are localized at the opposite 
edge n  Ny  1 (say Left). Since all these bands are 

filled, the spin moment of cell n=0 will be, approximate-
ly, equal to that of cell n  Ny  1; so we obtain 

m0  0.703  mNy1. To m0 contribute positively the 

atoms A2, A1 and A3 whereas mNy1 is built by the 

atoms B2, B1 and B3. 

We now turn to the study of the edge magnetization 

as a function of doping, and as we explained above, we 

fix the number of electrons in the ribbon unit cell nruc 

and solve self-consistently in order to compute the 

Fermi level.  The edge magnetization is defined by 

,edge nm m   ,   R, L; where from Fig. 2a, the three 

nearest cells are considered. We have used Ny  24 and 

nruc  Nat + nruc with nruc limited to 0.0  nruc  2.0; 

because beyond nruc  2.0 the edge magnetizations 

vanish. As a starting condition we use condition 1) 

(FM-FM), and the results are shown in Figure 3. Ini-

tially, at half filling, we have the six edge bands of spin 

up completely filled, and at very low doping levels 
(nruc ≤ 0.6), both medge, R and medge, L decrease slowly as 

doping is increased. For nruc > 0.6, we have found sev-

eral regions in which either both medge,R and medge,L 

decrease uniformly with an increase of doping or they 

change abruptly, one of them reducing its value notably 

and the other increasing its value thought not so nota-
bly (transition regions). In the interval 0.6 < nruc < 0.7, 

an edge band with spin down and localized at n  Ny  1 

(Left) begins to occupy. By increasing the doping, be-

cause of the flat band, a great deal of states of the same 

energy needs to be occupied, producing a few states of 
spin down at edge n  0 (Right) to be empty and that a 

left-edge spin-down band (LEB) becomes totally occu-

pied. Therefore, medge,R increases slightly its value 

while medge,L reduces notably its value; that is, at 
nruc  0.6 medge,R  medge,L  0.750 (in B units) while at 

nruc  0.7 we have medge,R  0.782 and medge,L  0.575. 

The fact that this left edge band is full produces a left 

edge charge accumulation (LECA) (see Fig. 3). In 
0.7 ≤ nruc ≤ 1.05, the LECA phenomena and the differ-

ence between medge,R and medge,L, with medge,R > medge,L, 

are maintained and, because of new edge states of spin 

down in R and L edges are becoming filled, both mag-

netizations decrease slowly. The interval 
1.05 < nruc < 1.1 is another short transition region, but 

now, two edge bands of spin down and localized at the 

right edge, are going to be occupied; which makes that 
at nruc  1.1 one LEB is filled and two right-edge spin 

down bands (REB) are filled. Then, medge,R < medge,L 

and there exists a right-edge charge accumulation 
(RECA).  Again, from nruc  1.1 to 1.45, we have that, 

due to the fact that the populations of R-edge and L-

edge states of spin down are increasing, both magneti-

zations reduce their value uniformly. Note that, at this 

doping level, we still have three edge bands of spin 

down completely unoccupied.  For that reason, we could 

expect another transition region defined by 
1.45 < nruc < 1.60, in which the system evolves from a 

state with two filled REBs and one filled LEB to a 

state with two filled LEBs, one LEB partially occu-

pied and two filled REB.  Therefore, in the next region 

of calmly variations (1.60 ≤ nruc ≤ 1.70) we would have 

medge,R > medge,L with medge,L approaching zero, and 

charge accumulation in the left edge.  Following this 

reasoning, by a very abrupt transition region 
 

 
Fig. 3  Edge magnetizations medge,R (*-continuous-line) and 

medge,L (o-dashed-line) as a function of doping nruc.  
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 (1.70 < nruc < 1.72) we would reach a zone 

(1.72 ≤ nruc ≤ 1.90) with medge,R  0, medge,L > 0 but rap-

idly going to zero as nruc increases, and RECA. In this 

way, we would have four transition regions in which 

there are involved, respectively, one left-edge band, two 

right-edge bands, two left-edge bands and one right-

edge band; all of them with down spin.  However, in the 
range 1.45 < nruc < 1.80, our algorithm is not conver-

gent; so that we are not sure of the results we have 

obtained in that interval. Finally, for nruc  1.90, 

E(k)  E(k) and the system stops being magnetic, as it 

happens for monolayer graphene nanoribbons with 

chiral edges, when doping is increased [8]. So, for 
n  0,1,…,Ny  1 we have mn  0. 
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