МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ СУМСЬКИЙ ДЕРЖАВНИЙ УНІВЕРСИТЕТ

ІНФОРМАТИКА, МАТЕМАТИКА, АВТОМАТИКА

IMA :: 2016

МАТЕРІАЛИ та програма

НАУКОВО-ТЕХНІЧНОЇ КОНФЕРЕНЦІЇ

(Суми, 18-22 квітня 2016 року)

Суми Сумський державний університет 2016

Сравнение алгоритмов поиска опорных вершин кривой Безье при помощи генетических алгоритмов

IMA:: 2016

Степанов К.А., *аспирант* Томский государственный университет (НИТГУ), г. Томск, Российская Федерация

При оптимизации формы изучаемого объекта целесообразным является использование кривой Безье. В данной работе решалась задача определения наиболее эффективного алгоритма поиска кривой Безье, которые различались способом нахождения x-координат опорных вершин: либо заданы до начала работы алгоритма в виде $x_i = i * h$, где h заранее известно; либо ищутся в процессе решения; либо заданы, исходя из данных предыдущего решения. Начальная и конечная точки фиксированы (0,0) и (1,0), y-координаты находились в процессе решения. Сравнение эффективности исследуемых алгоритмов проводилось в три этапа:

- 1. Использовалась степенная функция $y = x x^8$. При фиксированных x получено среднее отклонение $0.773976*10^{-23}$, при отпущенных x оно получилось $0.486869\cdot10^{-5}$. Наилучший вариант получен при уточненных $x 0.141169\cdot10^{-27}$. Алгоритм лучше работает при поиске меньшего количества координат и использовании уточненных значений.
- 2. Применялось приближение к заданной кривой Безье из 11 точек с использованием 7 точек. При отпущенных x координатах найдено лучшее решение $0.186325\cdot 10^{-14}$, а в среднем решения получаются более удаленными от кривой Безье. При фиксированных и уточненных x решения практически не отличаются $(0.937752\cdot 10^{-12})$ и $0.395278\cdot 10^{-12}$ соответственно).
- 3. Использовалось приближение к заданной кривой Безье из 11 точек с использованием 12 точек. При фиксированных x получено среднее отклонение $0.675267\cdot10^{-12}$, при отпущенных x оно получилось $0.411169\cdot10^{-11}$. Наилучший вариант получен при уточненных $x-0.835624\cdot10^{-16}$.

Таким образом, наилучшим из трех анализируемых по качеству решения является алгоритм с уточнением данных предыдущего решения, но он требует два запуска и имеет большую продолжительность по сравнению с двумя другими.