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 We report decision tree (DT) modeling of randomly textured tandem silicon solar cells characteristics. 

The photovoltaic modules of silicon-based solar cells are extremely popular due to their high efficiency and 

longer lifetime. Decision tree model is one of the most common data mining models can be used for predic-

tive analytics. The reported investigation depicts optimum decision tree architecture achieved by tuning 

parameters such as Min split, Min bucket, Max depth and Complexity. DT model, thus derived is easy to 

understand and entails recursive partitioning approach implemented in the “rpart” package. Moreover the 

performance of the model is evaluated with reference Mean Square Error (MSE) estimate of error rate.  

The modeling of the random textured silicon solar cells reveals strong correlation of efficiency with “Fill 

factor” and “thickness of a-Si layer”. 
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1. INTRODUCTION 
 

The solar cells are turning into an undeniably well-

known type of option vitality around the globe, utilizing 

photovoltaic and silicon solar cells to change over radi-

ation into power. Solar power has had a long history of 

fizzled begins and restricted appropriation. The PV 

modules of silicon-based solar cells are extremely popu-

lar in the market due to their high efficiency and longer 

lifetime. In recent years, many research investigations 

are focused on the improvement of solar cell efficiency 

[1-3]. Scholarly literature in this regards reveals that 

the expense of thin film solar cells utilizing cost effec-

tive inorganic semiconductor materials, called "genera-

tion two" photovoltaics, is on a very basic level con-

strained by embodiment and parity of-framework ex-

penses. To accomplish the expense and execution levels 

expected to contend in the wholesale vitality market, 

"third generation" photovoltaic technology requires not 

just a noteworthy change in productivity without add-

ing apparently to substantial scale fabricating costs, 

additionally that it utilizes profuse, innocuous, stable, 

and robust materials. In this regards, recently our group 

reported investigations on the effect of device dimension 

on the silicon solar cell, by using the PC1D numerical 

simulation environment, wherein strong correlation of 

efficiency of the silicon solar cell with its size has been 

exemplified [4]. Furthermore among the conceivable 

methodologies that could meet these criteria, tandem or 

stack-cells of various bandgaps have been recognized as 

having high potential for productivity change, with effi-

ciency confining in the range of 45 % and 50.5 % for two-

and three-cell stacks individually [5]. 

In the present investigation, we demonstrate the 

modelling of tandem silicon solar cells characteristics 

using decision tree approach [11]. Decision trees are 

the traditional building blocks of data mining and the 

classic machine learning algorithm [12]. Because of its 

simple representation it is popular. The algorithm uses 

a recursive partitioning approach, implemented in the 

“rpart” package. It is comparable to CART and ID3/C4 

[16]. The reported decision tree consists of three rules 

with five nodes for modelling of tandem solar cell char-

acteristics. The reported experiment is simulated in R 

and Rattle [15]. R is an open source tool for statistical 

data processing data mining. Rattle is a graphical data 

mining package offers GUI for R.  

The rest of the paper is structured as follows; after 

a brief introduction, the second section deals with the 

theory of randomly textured tandem silicon solar cells.  

The third section portrays theoretical aspects of pro-

posed decision tree model. The computational details, 

results and discussion are reported in the fourth sec-

tion. The conclusion at the end divulges aptness of the 

decision tree for predicting the efficiency of tandem 

solar cell. 

 

2. RANDOMLY TEXTURED TANDEM SILICON 

SOLAR CELLS: THEORETICAL CONSIDERA-

TION 
 

The tandem solar cell is more efficient than single 

junction solar cell owing to absorption of different band 

of electromagnetic spectrum by different layers of solar 

cell [6-8]. In the present investigation, we have consid-

ered randomly textured tandem silicon solar cells in 

the form of SiO2/ITO/a-Si/c-Si/ZnO/Ag which is shown 

in Fig. 1. 
 

 
 

Fig. 1 – Schematic representation of random textured 

SiO2/ITO/a-Si/c-Si/ZnO/Ag solar cell  
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Fig. 2 – Decision tree for tandem solar cell efficiency 
 

The data for decision tree modelling is acquired 

from time domain simulation of randomly textured 

tandem silicon solar cells using quadratic complex 

rational function approach [9]. Efficiency of solar cell is 

obtained by varying thickness of ITO layer, a-Si layer, 

c-Si layer and ZnO layer [9]:  

 Efficiency of the tandem silicon solar cell increases 

with increase of thickness of ITO layer. The higher 

efficiency is obtained at 150 nm ITO thickness and 

efficiency tends to decrease further.  

 Efficiency of silicon solar cell tends to decrease as 

thickness of the a-Si layer increases.  

 Since the efficiency of the solar cell can be increased 

by absorbing a large portion of the infrared region, the 

efficiency tends to increases with increase of the thick-

ness of the c-Si layer 

 Variation in the ZnO layer thickness effects less on 

efficiency of solar cell 

 

3. DECISION TREES: APTNESS FOR MODEL-

LING 
 

The decision tree is a very convenient and efficient 

representation of knowledge [16]. To model the charac-

teristics of randomly textured tandem silicon solar 

cells, we have employed decision tree approach. It 

starts with a single root node that splits into multiple 

branches, leading to further nodes, each of which may 

further split or else terminate as a leaf node. Associat-

ed with each nonleaf node will be a test or question 

that determines which branch to follow [15]. The leaf 

nodes contain the decisions.  

Fig. 2 shows decision tree derived in the present in-

vestigation represents efficiency of solar cell for differ-

ent input combinations. That the root node of decision 

tree tests thickness of a-S, has a value   150 contin-

ues down to the left side of the tree, otherwise right 

side of the tree. The next test down this right side of 

the tree is fill factor value. Thus it proceeds and will be 

able retrieve efficiency value of tandem solar cell [13]. 

Following are the set of tuning parameters varied in 

Rattle to obtain optimized decision tree model for tan-

dem solar cell efficiency computation: 

 Min split – Minimum number of observations that 

must exist in a node resulting from a split before a spilt 

will be performed 6 

 Min Bucket – This is the minimum number of obser-

vations allowed in any leaf node of the decision tree 2 

 Max Depth – This is the maximum depth of any node 

of the final tree 10 

 Complexity – This parameter is used to control the 

size of the decision tree and to select optimal tree size. 

The performance of the model is calculated by using 

Mean Square Error between expected output and esti-

mated output, given in equation (1). The Yi represents 

the observed value of the ith observation, where, i  1, 

2,…n and  ̂  denote the predicted value of the ith obser-

vation [13]. The difference       ̂    is termed as an 

error.  
 

 MSE   
 

 
 ∑        ̂   

 
   

 
 (1) 

 

4. COMPUTATIONAL DETAILS, RESULTS AND 

DISCUSSION 
 

This section explores details of experiment conduct-

ed for the modelling of tandem silicon solar cells char-

acteristics using decision tree approach. R and Rattle 

are used to analyze model structure, configuring tuning 

parameters to obtain optimized DT model [18]. The 

model is conceived as Multi-Input Single Output. It 

works basically with six inputs viz. thickness of SiO2, 

ITO, a-Si, c-Si, ZnO and silver layer. Efficiency of solar 

cell is considered as output variable [17]. The dataset 

for decision tree modelling is acquired from time do-

main simulation of randomly textured tandem silicon 

solar cells using quadratic complex rational function 

approach [9]. Dataset revels that higher efficiency is 

evident at 150 nm ITO layer thickness, 100 nm a-Si 

layer thickness, and 2500 nm c-Si layer thickness. 

Fig. 3 summarizes the decision tree for tandem so-

lar cell characteristics modelling.  It is the text view of 

resultant decision tree and also highlights the key in-

terface widgets that need to deal with to build a tree. 

The tree has built to predict the value of the variable 

“Efficiency” based on the remainder of the variables in 

the dataset supplied [14]. Variables actually used in 

tree construction are “Fill factor” and “thickness of a-Si 

layer”. Fig. 4 shows the rule set which is a textual rep-

resentation of tandem solar cell decision tree model. 

The decision tree shown in fig 2 translates to the rules, 

where each rule corresponds to one pathway through 

the decision tree, starting at the root node and termi-

nating at a leaf node. 

Thus derived optimized decision tree entails values 

for tuning parameters such as Min split, Min bucket, 

Max depth and complexity are 6, 2, 10 and 0.01 respec-

tively. Performance evaluation of the model is summa-

rized in Table 1. This complexity table explains itera-

tions and associated change in the accuracy of the mod-

el as new levels are added to the tree. We are most 

likely interested in the cross-validated error, which is 

the xerror column of the table. The CP (complexity 
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parameter) value reveals that as the tree splits into 

more nodes, the complexity parameter is reduced. But 

we also note that the cross validation error starts to 

increase as we further split the decision tree. This tells 

the algorithm to stop partitioning, as the error rate is 

not improving. 
 

Table 1 – Complexity Table for DT model 
 

level CP nsplit rel error xerror xstd 

1 0.76616 0 1.000000 1.20111 0.31371 

2 0.19570 1 0.233841 0.54733 0.23574 

3 0.01000 2 0.038144 0.31371 0.25321 

 

5. CONCLUSION 
 

In the present paper, we have reported decision tree 

(DT) modelling of randomly textured tandem silicon 

solar cells characteristics. A decision tree model is one of 

the most common data mining models. It is popular 

because the resulting model is easy to understand. The 

reported investigation depicts optimum decision tree 

architecture achieved by tuning parameters such as Min 

split, Min bucket, Max depth and complexity. DT mod-

el, thus derived is easy to understand and entails re-

cursive partitioning approach implemented in the rpart 

package. Result concludes that DT prediction is a suit-

able approach since the resulting analysis is much 

more accurate and precise. Consistent with our earlier 

reported investigations [4], the modelling of the ran-

domly textured tandem silicon solar cells demonstrates 

strong correlation of efficiency with “”Fill factor” and 

“thickness of a-Si layer”.  
 

 
 

Fig. 3 – Summary of the Decision Tree for tandem solar cell characteristics modelling 
 

 
 

Fig. 4 – Textual representation of tandem solar cell decision tree model 
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