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This article describes a way to implement a 

distributed file system for MAUI job scheduler, which 

solves the problems of low scalability and  unreliability 

of data storage, as well as a problem of problem of data 

inaccessibility due to failures in software or hardware. 

The architecture which is suitable for MAUI GRID 

systems is suggested. 
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I. INTRODUCTION 

In recent years a rapid increase in popularity of 

distributed systems has been seen. The reason this is in 

their greater reliability, scalability and power. That’s why 

a need for simple and convenient software that simplifies 

the user experience for such a systems  has drastically 

increased. 

Currently to run MAUI task user of GRID system 

must manually copy the files to each node in the system, 

which increases the likelihood of errors. Also this 

approach has a number of other disadvantages compared 

to using the concept of a distributed file system for 

organizing the files workflow. The advantages of using 

this concept are scalable and reliable data storage, data 

accessibility and low cost of equipment for storing files.  

II. ARCHITECTURE OF DISTRIBUTED FILE SYSTEM FOR 

MAUI 

Distributed File System (DFS) is a file system where 

the file pieces (blocks) are stored on a bunch of 

computers connected with high-bandwidth network [1]. 

The system which is described in this article is a subtype 

of DFS, which is used for Maui Scheduler. 

The system has two main types of nodes: namenode 

and datanode. And two types of ancillary nodes: 

journalnode and standby namenode. Figure 1 shows the 

architecture, placement and interaction of these tytpes 

nodes. Namenode is a master node in DFS. There is only 

one active namenode in the DFS. It stores metadata of 

files, as well as information about where data are stored 

in the cluster file. Metadata examples are file names, their 

types, permissions, data about blocks location within the 

network. Namenode does not store any file blocks. This is 

done in order to reduce the load of it. In most file 

operations first, and sometimes the only call  is made to 

namenode. The exception is a write operation to a file, 

which requires coordination between all types of file 

system nodes. 

 
Figure 1.  Architecture of RFS 

MAUI jobs communicate with namenamenode every 

time they want to find a file, or add / copy / move it.  

Datanode – is a slave node (master/slave 

achritecutre), the main purpose of which is to preserve 

data blocks. To take advantage of the RFS one should 

have more than a single datanode in a GRID system. 

Each node is aware of the blocks on it. The blocks are 

accessible namenode tells the user an exact location of 

them of datanode. In addition, datanode can replicate file 

blocks to improve system reliability. Also due to 

replication, this type of nodes usually does not require 

administrators to install RAID drives. 

How does the namenode choose which datanodes to 

store replicas on? There’s a tradeoff between reliability 

and write bandwidth and read bandwidth here. For 

example, placing all replicas on a single node incurs the 

lowest write bandwidth penalty since the replication 

pipeline runs on a single node, but this offers no real 

redundancy (if the node fails, the data for that block is 

lost). Also, the read bandwidth is high for off-rack reads. 

At the other extreme, placing replicas in different data 

centers may maximize redundancy, but at the cost of 

bandwidth. Even in the same data center (which is what 

all Maui GRID systems to date have run in), there are a 

variety of placement strategies. Indeed, MAUI changed 

its placement strategy in release 0.17.0 to one that helps 

keep a fairly even distribution of blocks across the 

cluster. And from 0.21.0, block placement policies are 

pluggable. 

MAUI’s default strategy is to place the first replica on 

the same node as the client (for clients running outside 

the cluster, a node is chosen at random, although the 

system tries not to pick nodes that are too full or too 

busy). The second replica is placed on a different rack 

from the first (off-rack), chosen at random. The third 
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replica is placed on the same rack as the second, but on a 

different node chosen at random. Further replicas are 

placed on random nodes on the cluster, although the 

system tries to avoid placing too many replicas on the 

same rack. 

Once the replica locations have been chosen, a 

pipeline is built, taking network topology into account. 

For a replication factor of 3, the pipeline might look like 

Overall, this strategy gives a good balance among 

reliability (blocks are stored on two racks), write 

bandwidth (writes only have to traverse a single network 

switch), read performance (there’s a choice of two racks 

to read from), and block distribution acrossthe cluster 

(clients only write a single block on the local rack). 

For fast file blocks access, namenode caches often 

used blocks. Therefore, increasing the number of nodes 

on the RAM data although it may result in a slightly 

faster performance, but not critical. 

Another part of the file system is an RFS client. RFS 

client is a software library that allows you to work with 

the file system using simple unix-like commands. 

Allowed commands are: ls, rm, mkdir, touch, some other 

RFS specific commands are: copyFromLocal, 

copyToLocal. These commands allow you to copy files 

or folders from the local file system to RFS and vice 

versa. Another RFS client is MAUI RFS client integrated 

with MAUI API interface. It is used to do file operations 

through built MAUI interface [2]. 

Let’s take a look at the example of the interaction  of 

the nodes in case of basic file operations. The most 

complex operation in terms of nodes interaction is the 

RFS file write operation (WRITE). It consists of four 

steps described below: 

1. Call to namenode for a list of datanodes which 

should receive file blocks. 

2. Uploading of file blocks to the given nodes. 

3. Replication of the received blocks by datanodes. 

4. Sending the information about the file blocks 

location to the namenode. 

Operation of changing file attributes 

(CHANGEATTR) such as permissions, name, location is 

done with one call to namenode. The same applies to the 

file removal operation (RMFILE), creating a folder 

(MKDIR) or empty file (TOUCH). File copy operation is 

implemented through a series of calls from namenode to 

datanodes. 

Let’s define RFS file block concept in greater details. 

RFS blocks are large compared to disk blocks, and the 

reason is to minimize the cost of seeks. By making a 

block large enough, the time to transfer the data from the 

disk can be significantly longer than the time to seek to 

the start of the block. Thus the time to transfer a large file 

made of multiple blocks operates at the disk transfer rate. 

A quick calculation shows that if the seek time is 

around 10 ms and the transfer rate is 100 MB/s, to make 

the seek time 1% of the transfer time, we need to make 

the block size around 100 MB. The default is actually 64 

MB, although many HDFS installations use 128 MB 

blocks. This figure will continue to be revised upward as 

transfer speeds grow with new generations of disk drives. 

Let’s describe the permission model in our DFS. It 

has a permissions model for files and directories that is 

much like the POSIX model. There are three types of 

permission: the read permission (r), the write permission 

(w), and the execute permission (x). The read permission 

is required to read files or list the contents of a directory. 

The write permission is required to write a file or, for a 

directory, to create or delete files or directories in it. The 

execute permission is ignored for a file because you can’t 

execute a file on DFS (unlike POSIX), and for a directory 

this permission is required to access its children [3]. 

Each file and directory has an owner, a group, and a 

mode. The mode is made up of the permissions for the 

user who is the owner, the permissions for the users who 

are members of the group, and the permissions for users 

who are neither the owners nor members of the group.By 

default, DFS runs with security disabled, which means 

that a client’s identity is not authenticated. Because 

clients are remote, it is possible for a client to become an 

arbitrary user simply by creating an account of that name 

on the remote system. This is not possible if security is 

turned on. Either way, it is worthwhile having 

permissions enabled (as they are by default; see the 

dfs.permissions.enabled property) to avoid accidental 

modification or deletion of substantial parts of the 

filesystem, either by users or by automated tools or 

programs. 

III. ORGANIZATION FOR HIGHLY RELIABLE DISTRIBUTED 

FILE SYSTEM. 

The combination of replicating namenode metadata 

on multiple filesystems and using the secondary 

namenode to create checkpoints protects against data 

loss, but it does not provide high-availability of the 

filesystem. The namenode is still a single point of failure 

(SPOF). If it did fail, all clients—including Maui jobs—

would be unable to read, write, or list files, because the 

namenode is the sole repository of the metadata and the 

file-to-block mapping. In such an event the whole Maui 

system would effectively be out of service until a new 

namenode could be brought online.On large clusters with 

many files and blocks, the time it takes for a namenode to 

start from cold can be 30 minutes or more.We remedy 

this situation by adding support for RFS.  

In this implementation there is a pair of namenodes in 

an active-standby configuration. A few architectural 

changes are needed to allow this to happen: 

- The namenodes must use highly-available shared 

storage to share the edit log. When a standby 

namenode comes up, it reads up to the end of the 

shared edit log to synchronize its state with the 

active namenode, and then continues to read new 
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entries as they are written by the active 

namenode. 

- Datanodes must send block reports to both 

namenodes because the block mappings are 

stored in a namenode’s memory, and not on disk. 

- Clients must be configured to handle namenode 

failover, using a mechanism that is transparent to 

users. 

- The secondary namenode’s role is subsumed by 

the standby, which takes periodic checkpoints of 

the active namenode’s namespace. 

If the active namenode fails, the standby can take over 

very quickly (in a few tens of seconds) because it has the 

latest state available in memory: both the latest edit log 

entries and an up-to-date block mapping. The actual 

observed failover time will be longer in practice (around 

a minute or so), because the system needs to be 

conservative in deciding that the active namenode has 

failed. One of the main advantages of a distributed file 

system is the possibility of highly reliable file storage and 

access. The problems that might disrupt high reliability   

access to data or damage the data are [4]: 

- hardware or software failure of namenode 

- hardware or software failure of datanodes 

- unavailability of data due to network problems 

Hardware or software failure of datanode is solved 

using file blocks replication. Replication in this sense is 

excessive copying of data blocks between datanodes. The 

number of nodes which store data blocks is called 

replication factor. By setting up a high replication factor 

and replication to different network segments we can 

achieve reliable access to the files in the event failure of 

multiple nodes at once, or even of the entire network 

segments. In order to for file system to work when 

namenode failure occurs, the introduction of two types of 

auxiliary nodes is required. They are journalnode and 

stanby namenode.Two separate machines are configured 

as namenodes. At any given time, exactly one namenode 

is active and the other is in standby. Active namenode is 

responsible for all client operations in the cluster, while 

other one is in standby mode and is not used, however it 

still retains enough information about the state of the file 

system to ensure a rapid transition to it, if necessary. For 

standby namenode to be synchronized with the active 

node, both namenodes are connected with a group of 

individual nodes, so-called journalnodes. When any 

namespace change is performed by active node, it 

registers record modification to the journal nodes. 

Standby namenode is capable of reading the log 

journalnode and constantly monitors changes in it. As a 

standby namenode sees the changes, it applies them to its 

own namespace. In case of failure of the active 

namenode, reserve one, after reading all the logs from the 

journalnodes declares itself active. This ensures that the 

namespace is fully synchronized before the transition to 

another node happens. In order to provide a fast failover, 

it is also necessary that the standby node have up-to-date 

information regarding the location of blocks in the 

cluster. In order to achieve this, the datanodes are 

configured with the location of both namenodes, and send 

block location information and heartbeats to both.It is 

vital for the correct operation of an GRID system that 

only one of the namenodes is active at any point in time. 

Otherwise, the namespace state would quickly diverge 

between the two, risking data loss or other incorrect 

results. In order to ensure this property and prevent the 

so-called "split-brain scenario," the journalnodes will 

only ever allow a single namenode to be a writer at a 

time. During a failover, the namenode which is to become 

active will simply take over the role of writing to the 

journalnodes, which will effectively prevent the other 

namenode from continuing in the active state, allowing 

the new active to safely proceed with 

failover.Inaccessibility due to network problems can be 

easily eliminated by organizing redundant network 

topology.The underlying concept behind network 

redundancy is to provide alternate paths for data to travel 

along in case a cable is broken or a connector 

accidentally un-plugged. However, Ethernet as standard 

cannot have rings or loops in the network as this will 

cause broadcast storms and can ultimately cause the 

network to stop working. An Ethernet network cannot 

have two paths from point A to point B without a 

mechanism in place to support this type of topology [5]. 

To achieve redundancy, the network infrastructure 

(switches) must support redundancy protocols designed 

to negate the usual problems of putting loops into an 

Ethernet network, maintaining a default data path and 

switching to an alternate one when a fault occurs.  

CONCLUSIONS 

This paper described the architecture of a distributed 

file system for MAUI, which achieves greater scalability 

and high reliability and availability of data storage. 
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