

MINISTRY OF EDUCATION AND SCIENCE OF UKRAINE

SUMY STATE UNIVERSITY

UKRAINIAN FEDERATION OF INFORMATICS

PROCEEDINGS
OF THE V INTERNATIONAL SCIENTIFIC

CONFERENCE

ADVANCED INFORMATION

SYSTEMS AND TECHNOLOGIES

AIST-2017
(Sumy, May 17–19, 2017)

SUMY

SUMY STATE UNIVERSITY

2017

The Vth International Conference «Advanced Information Systems and Technologies, AIST 2017»

17-19 May 2017, Sumy, Ukraine

66

Creating Highly Available Distributed File System for

Maui Family Job Schedulers
Andrii Onishchuk

National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute"

This article describes a way to implement a

distributed file system for MAUI job scheduler, which

solves the problems of low scalability and unreliability

of data storage, as well as a problem of problem of data

inaccessibility due to failures in software or hardware.

The architecture which is suitable for MAUI GRID

systems is suggested.

Keywords – distributed file system, MAUI task

scheduler, file system scalability, high reliability of file

systems, name node, datanode.

I. INTRODUCTION

In recent years a rapid increase in popularity of

distributed systems has been seen. The reason this is in

their greater reliability, scalability and power. That’s why

a need for simple and convenient software that simplifies

the user experience for such a systems has drastically

increased.

Currently to run MAUI task user of GRID system

must manually copy the files to each node in the system,

which increases the likelihood of errors. Also this

approach has a number of other disadvantages compared

to using the concept of a distributed file system for

organizing the files workflow. The advantages of using

this concept are scalable and reliable data storage, data

accessibility and low cost of equipment for storing files.

II. ARCHITECTURE OF DISTRIBUTED FILE SYSTEM FOR

MAUI

Distributed File System (DFS) is a file system where

the file pieces (blocks) are stored on a bunch of

computers connected with high-bandwidth network [1].

The system which is described in this article is a subtype

of DFS, which is used for Maui Scheduler.

The system has two main types of nodes: namenode

and datanode. And two types of ancillary nodes:

journalnode and standby namenode. Figure 1 shows the

architecture, placement and interaction of these tytpes

nodes. Namenode is a master node in DFS. There is only

one active namenode in the DFS. It stores metadata of

files, as well as information about where data are stored

in the cluster file. Metadata examples are file names, their

types, permissions, data about blocks location within the

network. Namenode does not store any file blocks. This is

done in order to reduce the load of it. In most file

operations first, and sometimes the only call is made to

namenode. The exception is a write operation to a file,

which requires coordination between all types of file

system nodes.

Figure 1. Architecture of RFS

MAUI jobs communicate with namenamenode every

time they want to find a file, or add / copy / move it.

Datanode – is a slave node (master/slave

achritecutre), the main purpose of which is to preserve

data blocks. To take advantage of the RFS one should

have more than a single datanode in a GRID system.

Each node is aware of the blocks on it. The blocks are

accessible namenode tells the user an exact location of

them of datanode. In addition, datanode can replicate file

blocks to improve system reliability. Also due to

replication, this type of nodes usually does not require

administrators to install RAID drives.

How does the namenode choose which datanodes to

store replicas on? There’s a tradeoff between reliability

and write bandwidth and read bandwidth here. For

example, placing all replicas on a single node incurs the

lowest write bandwidth penalty since the replication

pipeline runs on a single node, but this offers no real

redundancy (if the node fails, the data for that block is

lost). Also, the read bandwidth is high for off-rack reads.

At the other extreme, placing replicas in different data

centers may maximize redundancy, but at the cost of

bandwidth. Even in the same data center (which is what

all Maui GRID systems to date have run in), there are a

variety of placement strategies. Indeed, MAUI changed

its placement strategy in release 0.17.0 to one that helps

keep a fairly even distribution of blocks across the

cluster. And from 0.21.0, block placement policies are

pluggable.

MAUI’s default strategy is to place the first replica on

the same node as the client (for clients running outside

the cluster, a node is chosen at random, although the

system tries not to pick nodes that are too full or too

busy). The second replica is placed on a different rack

from the first (off-rack), chosen at random. The third

The Vth International Conference «Advanced Information Systems and Technologies, AIST 2017»

17-19 May 2017, Sumy, Ukraine

67

replica is placed on the same rack as the second, but on a

different node chosen at random. Further replicas are

placed on random nodes on the cluster, although the

system tries to avoid placing too many replicas on the

same rack.

Once the replica locations have been chosen, a

pipeline is built, taking network topology into account.

For a replication factor of 3, the pipeline might look like

Overall, this strategy gives a good balance among

reliability (blocks are stored on two racks), write

bandwidth (writes only have to traverse a single network

switch), read performance (there’s a choice of two racks

to read from), and block distribution acrossthe cluster

(clients only write a single block on the local rack).

For fast file blocks access, namenode caches often

used blocks. Therefore, increasing the number of nodes

on the RAM data although it may result in a slightly

faster performance, but not critical.

Another part of the file system is an RFS client. RFS

client is a software library that allows you to work with

the file system using simple unix-like commands.

Allowed commands are: ls, rm, mkdir, touch, some other

RFS specific commands are: copyFromLocal,

copyToLocal. These commands allow you to copy files

or folders from the local file system to RFS and vice

versa. Another RFS client is MAUI RFS client integrated

with MAUI API interface. It is used to do file operations

through built MAUI interface [2].

Let’s take a look at the example of the interaction of

the nodes in case of basic file operations. The most

complex operation in terms of nodes interaction is the

RFS file write operation (WRITE). It consists of four

steps described below:

1. Call to namenode for a list of datanodes which

should receive file blocks.

2. Uploading of file blocks to the given nodes.

3. Replication of the received blocks by datanodes.

4. Sending the information about the file blocks

location to the namenode.

Operation of changing file attributes

(CHANGEATTR) such as permissions, name, location is

done with one call to namenode. The same applies to the

file removal operation (RMFILE), creating a folder

(MKDIR) or empty file (TOUCH). File copy operation is

implemented through a series of calls from namenode to

datanodes.

Let’s define RFS file block concept in greater details.

RFS blocks are large compared to disk blocks, and the

reason is to minimize the cost of seeks. By making a

block large enough, the time to transfer the data from the

disk can be significantly longer than the time to seek to

the start of the block. Thus the time to transfer a large file

made of multiple blocks operates at the disk transfer rate.

A quick calculation shows that if the seek time is

around 10 ms and the transfer rate is 100 MB/s, to make

the seek time 1% of the transfer time, we need to make

the block size around 100 MB. The default is actually 64

MB, although many HDFS installations use 128 MB

blocks. This figure will continue to be revised upward as

transfer speeds grow with new generations of disk drives.

Let’s describe the permission model in our DFS. It

has a permissions model for files and directories that is

much like the POSIX model. There are three types of

permission: the read permission (r), the write permission

(w), and the execute permission (x). The read permission

is required to read files or list the contents of a directory.

The write permission is required to write a file or, for a

directory, to create or delete files or directories in it. The

execute permission is ignored for a file because you can’t

execute a file on DFS (unlike POSIX), and for a directory

this permission is required to access its children [3].

Each file and directory has an owner, a group, and a

mode. The mode is made up of the permissions for the

user who is the owner, the permissions for the users who

are members of the group, and the permissions for users

who are neither the owners nor members of the group.By

default, DFS runs with security disabled, which means

that a client’s identity is not authenticated. Because

clients are remote, it is possible for a client to become an

arbitrary user simply by creating an account of that name

on the remote system. This is not possible if security is

turned on. Either way, it is worthwhile having

permissions enabled (as they are by default; see the

dfs.permissions.enabled property) to avoid accidental

modification or deletion of substantial parts of the

filesystem, either by users or by automated tools or

programs.

III. ORGANIZATION FOR HIGHLY RELIABLE DISTRIBUTED

FILE SYSTEM.

The combination of replicating namenode metadata

on multiple filesystems and using the secondary

namenode to create checkpoints protects against data

loss, but it does not provide high-availability of the

filesystem. The namenode is still a single point of failure

(SPOF). If it did fail, all clients—including Maui jobs—

would be unable to read, write, or list files, because the

namenode is the sole repository of the metadata and the

file-to-block mapping. In such an event the whole Maui

system would effectively be out of service until a new

namenode could be brought online.On large clusters with

many files and blocks, the time it takes for a namenode to

start from cold can be 30 minutes or more.We remedy

this situation by adding support for RFS.

In this implementation there is a pair of namenodes in

an active-standby configuration. A few architectural

changes are needed to allow this to happen:

- The namenodes must use highly-available shared

storage to share the edit log. When a standby

namenode comes up, it reads up to the end of the

shared edit log to synchronize its state with the

active namenode, and then continues to read new

The Vth International Conference «Advanced Information Systems and Technologies, AIST 2017»

17-19 May 2017, Sumy, Ukraine

68

entries as they are written by the active

namenode.

- Datanodes must send block reports to both

namenodes because the block mappings are

stored in a namenode’s memory, and not on disk.

- Clients must be configured to handle namenode

failover, using a mechanism that is transparent to

users.

- The secondary namenode’s role is subsumed by

the standby, which takes periodic checkpoints of

the active namenode’s namespace.

If the active namenode fails, the standby can take over

very quickly (in a few tens of seconds) because it has the

latest state available in memory: both the latest edit log

entries and an up-to-date block mapping. The actual

observed failover time will be longer in practice (around

a minute or so), because the system needs to be

conservative in deciding that the active namenode has

failed. One of the main advantages of a distributed file

system is the possibility of highly reliable file storage and

access. The problems that might disrupt high reliability

access to data or damage the data are [4]:

- hardware or software failure of namenode

- hardware or software failure of datanodes

- unavailability of data due to network problems

Hardware or software failure of datanode is solved

using file blocks replication. Replication in this sense is

excessive copying of data blocks between datanodes. The

number of nodes which store data blocks is called

replication factor. By setting up a high replication factor

and replication to different network segments we can

achieve reliable access to the files in the event failure of

multiple nodes at once, or even of the entire network

segments. In order to for file system to work when

namenode failure occurs, the introduction of two types of

auxiliary nodes is required. They are journalnode and

stanby namenode.Two separate machines are configured

as namenodes. At any given time, exactly one namenode

is active and the other is in standby. Active namenode is

responsible for all client operations in the cluster, while

other one is in standby mode and is not used, however it

still retains enough information about the state of the file

system to ensure a rapid transition to it, if necessary. For

standby namenode to be synchronized with the active

node, both namenodes are connected with a group of

individual nodes, so-called journalnodes. When any

namespace change is performed by active node, it

registers record modification to the journal nodes.

Standby namenode is capable of reading the log

journalnode and constantly monitors changes in it. As a

standby namenode sees the changes, it applies them to its

own namespace. In case of failure of the active

namenode, reserve one, after reading all the logs from the

journalnodes declares itself active. This ensures that the

namespace is fully synchronized before the transition to

another node happens. In order to provide a fast failover,

it is also necessary that the standby node have up-to-date

information regarding the location of blocks in the

cluster. In order to achieve this, the datanodes are

configured with the location of both namenodes, and send

block location information and heartbeats to both.It is

vital for the correct operation of an GRID system that

only one of the namenodes is active at any point in time.

Otherwise, the namespace state would quickly diverge

between the two, risking data loss or other incorrect

results. In order to ensure this property and prevent the

so-called "split-brain scenario," the journalnodes will

only ever allow a single namenode to be a writer at a

time. During a failover, the namenode which is to become

active will simply take over the role of writing to the

journalnodes, which will effectively prevent the other

namenode from continuing in the active state, allowing

the new active to safely proceed with

failover.Inaccessibility due to network problems can be

easily eliminated by organizing redundant network

topology.The underlying concept behind network

redundancy is to provide alternate paths for data to travel

along in case a cable is broken or a connector

accidentally un-plugged. However, Ethernet as standard

cannot have rings or loops in the network as this will

cause broadcast storms and can ultimately cause the

network to stop working. An Ethernet network cannot

have two paths from point A to point B without a

mechanism in place to support this type of topology [5].

To achieve redundancy, the network infrastructure

(switches) must support redundancy protocols designed

to negate the usual problems of putting loops into an

Ethernet network, maintaining a default data path and

switching to an alternate one when a fault occurs.

CONCLUSIONS

This paper described the architecture of a distributed

file system for MAUI, which achieves greater scalability

and high reliability and availability of data storage.

REFERENCES:

[1] Ilya Ganelin. Spark: Big Data Cluster Computing in Production,

Wiley, March 2016. p.21-32.

[2] Site Maui [Electronic resource] // Access mode:
http://www.adaptivecomputing.com/products/open-source/maui/

[3] Neal Kobel. Distributed File Systems: Distributed Computing

Architecture, CreateSpace Independent Publishing Platform,
December 2016. p.41-67

[4] EC-Council. Computer Forensics: Investigating File and

Operating Systems, Wireless Networks, and Storage (CHFI), 2nd
Edition (Computer Hacking Forensic Investigator) 2nd Edition,

Course Technology, April 2016. p.18-26

5. A. Tanenbaum, Computer Networks 5th By Andrew S.
Tanenbaum (International Economy Edition), Prentice Hall,

January 2010. p.648-697

