орних земель і намагаються виробляти таку продукцію, яка є більш ліквідною та прибутковою на вітчизняному й світовому ринках. Переливання капіталу в аграрних сектор дозволило агрохолдингам утворити міцну горизонтальну та вертикальну систему виробництва, що істотно вплинуло на кінцеві результати їх діяльності. Хоча переважна їх більшість займається лише виробництвом та переробкою продукції рослинництва з використанням високопродуктивних енергозберігаючих технологій, спостерігаються і агрохолдинги, які почали розвивати тваринництво. Як правило, це підприємства, що мають потужні переробні заводи і виробляють для себе сировину тваринницького походження. Проте, розвиток даних формувань на селі викликав і нові проблеми, серед яких варто виділити ігнорування агрохолдингами інтересів жителів сіл, сприяння у розвалі інфраструктури сільських територій, знищення всякого роду конкуренції. Тому подальші публікації будуть присвячені саме даному колу питань.

ЛІТЕРАТУРА:

- 1. Андрійчук В.Г. Капіталізація сільського господарства: стан та економічне регулювання розвитку: Монографія. Ніжин: «Видавництво «Аспект-Поліграф», 2007. 216 с.
- 2. Дем'яненко С.І., Меєрс В., Джонсон Т., Зоря С. Зміна фокусу аграрної політики та розвитку села в Україні: висновки та перспективи для руху вперед. К.: КНЕУ, 2005. 172 с.
- 3. Украина: аграрные холдинги и перспективы рынка земли/ Під ред. Феофілова С. Л. К.: УкрАгроКонсалт, 2007.
- 4. Узун В. Лучшие российские агрохолдинги достигли эффективности мировых лидеров. Российская Бизнес-газета, № 634, 18.12.2007. □ HYPERLINK "http://www.rg.ru/2007/12/18/agro.html" □http://www.rg.ru/2007/12/18/agro.html□
- 5. Єранкін О.О. Консолідація та глобалізація ринків продукції АПК України: оцінка та перспективи розвитку. Агросвіт, 23, 2008. с. 14-21.
- 6. Єранкін О.О. Формування агропромислових формувань в Україні: глобалізаційний і маркетинговий аспект. Вчені записки. Збірник наукових праць. Випуск 10, 2008. с.175-187.
- 7. Офіційний сайт агрохолдингу «Агротон».- 🗆 HYPERLINK "http://www.agroton.com.ua/"

 ¬www.agroton.com.ua
- 8. Агрохолдинг «Ленд Вест» объявил о пересмотре стратегии.- «Коммерсант-Украина».- 10.11.2008. -www.rbc.ua/rus/newsline/2008/11/10/461801.shtml
- 9. Агрохолдинг "Мрия" рассматривает возможности М&А-сделок на агрорынке Украины.-16.02.2009.-

 HYPERLINK "http://stocks.investfunds.com.ua/news/13194"

 www. stocks.investfunds.com.ua/news/13194

 www.
- 10. Крупнейший агрохолдинг Украина из-за кризиса сокращает расходы и инвестиции.-27.11.2008.- □ HYPERLINK "http://www.afn.by/news/i/108903" □www.afn.by/news/i/108903□
- 11. Д. Гриньков. Поглощение из банка // Бізнес, №5, 4.02.2008, с. 63-65. www.business.ua/i784/a24141/

УДК 338.43:519.866:519.856

ПРИМЕНЕНИЕ ТЕОРИИ СТОХАСТИЧЕСКОГО ПРОГРАММИРОВАНИЯ ПРИ ЭКОНОМИКО-МАТЕМАТИЧЕСКОМ МОДЕЛИРОВАНИИ СЕЛЬСКОХОЗЯЙСТВЕННЫХ ПРОЦЕССОВ

Долгих В.Н., Долгих Я.В.

Постановка проблемы. Многие задачи организации и планирования сельскохозяйственного производства (задачи оптимального планирования площадей посева, оптимального кормового рациона, оптимального состава машинно-тракторного парка и др.) могут быть сведены к задачам линейного программирования:

$$F = \sum_{j=1}^{n} c_{j} x_{j} \rightarrow \max(\min)$$
(1)

$$\sum_{j=1}^{n} a_{ij} x_{j} \leq b_{i} \qquad (i = \overline{1, m}), \tag{2}$$

$$x_j \ge 0 \quad (j = \overline{1, n}). \tag{3}$$

В реальных задачах параметры целевой функции (1) и ограничений (2) являются случайными величинами. В этом случае задача (1) — (3) является задачей стохастического программирования, которую обычно преобразуют в эквивалентную детерминированную задачу нелинейного программирования.

Анализ научных исследований и публикаций. Примеры применения линейного программирования для решения задач сельскохозяйственного производства приведены в [1, 2]. Примеры корреляционно-регрессионных моделей приведены в [2].

Цель исследования. Применить теорию стохастического программирования для моделирования процессов сельскохозяйственного производства. Проанализировать влияние стохастичности коэффициентов задач линейного программирования на изменение оптимального решения.

Основной материал. Задачи стохастического програмирования формулируются в ММ, МП, ПП постановках [3].

В ММ постановке задача (1) – (3) формулируется следующим образом.

Найти *max*(*min*) значение математического ожидания целевой функции:

$$F = \sum_{i=1}^{n} \overline{c_i} x_i \to \max(\min)$$
 (4)

при ограничениях:

$$\sum_{j=1}^{n} \overline{a_{ij}} x_{j} \le \overline{b_{i}} \qquad (i = \overline{1, m}), \tag{5}$$

$$x_j \ge 0 \quad (j = \overline{1, n}), \tag{6}$$

где $\overline{c_j}$, $\overline{a_{ij}}$, $\overline{b_i}$ – математические ожидания случайных величин $c_{\!\scriptscriptstyle j}$, a_{ij} , b_i .

Таким образом, в MM постановке задача эквивалентна обычной детерминированной задаче линейного программирования.

В МП постановке задача (1) - (3) записывается в виде:

$$F = \sum_{j=1}^{n} \overline{c_j} x_j \to \max(\min)$$
 (7)

$$P\left\{\sum_{j=1}^{n} a_{ij} x_{j} \le b_{i}\right\} \ge g_{i}, \quad (i = \overline{1, m})$$
(8)

$$x_j \ge 0$$
, $(j = 1, n)$. (9)

Условия (8) означают, что вероятности выполнения ограничений (2) должны быть не менее заданных величин $g_{\,i}$.

При ПП постановке задаются предельно допустимые значения целевой функции (при максимизации – минимально допустимое значение F_{\min} , при минимизации –

максимально допустимое значение F_{\max}). Требуется найти такие значения x_j $(x_{j\min} \le x_j \le x_{j\max})$, при которых будет максимальной вероятность того, что целевая функция будет не хуже предельно допустимого значения:

$$F = P\left\{\sum_{j=1}^{n} c_j x_j \ge F_{\min}\right\} \to \max.$$
 (10)

$$P\left\{\sum_{j=1}^{n} a_{ij} x_{j} \le b_{i}\right\} \ge g_{i}, \quad i = \overline{1, m}$$

$$\tag{11}$$

$$x_{j\min} \le x_j \le x_{j\max} \qquad j = \overline{1, n}. \tag{12}$$

В случае нормального распределения параметров, задачи (7) – (9), (10) – (12) могут быть сведены к задачам нелинейного программирования. Например, если a_{ij} , b_i – независимые нормально распределенные случайные величины, то детерминированным эквивалентом задачи (7) – (9) является задача:

$$F = \sum_{j=1}^{n} \overline{c_j} x_j \to \max(\min)$$
 (13)

$$\sum_{i=1}^{n} \overline{a_{ij}} x_j \le \overline{b_i} - t_{g_i} \sqrt{D(a_{ij}) x_j^2 + D(b_i)}, \quad i = \overline{1, m}$$
(14)

$$x_{j\min} \le x_j \le x_{j\max} \qquad j = \overline{1, n} \,, \tag{15}$$

где $\,t_{g_{\,i}}\,$ – квантиль нормального распределения, соответствующий заданному уровню вероятности выполнения ограничений $\,g_{\,i}\,.$

Проведём анализ влияния стохастичности параметров на решение задачи. Введём обозначение:

$$z_{i} = t_{g_{i}} \sqrt{D(a_{ij})x_{j}^{2} + D(b_{i})}.$$
 (16)

Из (14) и (16) следует, что в условиях неопределённости информации необходимо учитывать уменьшение ресурса $\overline{b_i}$ на величину z_i .

Для определения степени влияния неопределённости на результаты решения задачи используются безразмерные параметры:

• относительное ухудшение целевой функции

$$\beta = \frac{\left| F_0 - F \right|}{F_0} \cdot 100\%,$$

где F_0 , F – значения целевой функции в ММ и МП постановках;

• относительное увеличение ресурса (плата за неопределённость)

$$\gamma_i = \frac{z_i}{\left(\sum_{j=1}^n a_{ij} x_j + z_i\right)} \cdot 100\%$$

В качестве примера рассмотрим задачу оптимального распределения площадей посева в МП постановке.

Пусть a_{11} , a_{12} – урожайность, c_1 , c_2 – ожидаемые значения прибыли с 1 га площадей посева озимой и яровой пшеницы; b_1 – планируемый суммарный объём реализации озимой и яровой пшеницы. Требуется найти такие площади посева озимой и яровой пшеницы \mathcal{X}_1 , \mathcal{X}_2 , при которых прибыль от реализации будет максимальной:

$$F = \overline{c_1} x_1 + \overline{c_2} x_2 \to \max, \tag{17}$$

при ограничениях на объём производимой продукции

$$P\{a_{11}x_1 + a_{12}x_2 \le b_1\} \ge g \tag{18}$$

и суммарный размер посевных площадей:

$$x_1 + x_2 \le S$$
. (19)

Кроме того, площади посева не могут быть отрицательными:

$$x_1 \ge 0, \quad x_2 \ge 0.$$
 (20)

Исходные данные для задачи (17) – (20) приведены в табл. 1 [4 – 7].

Таблица 1

Исходные данные за 1999-2007 г.

	Средняя урожайность пшеницы в год (ц/год)									
Озимая	20,6	17,1	27,5	31,5	12,7	31,2	25,3	19,7	28,2	
пшеница										
Яровая	13,3	13,8	18,1	20,5	16,9	19,6	17,7	20,3	15,6	
пшеница										
	Реализация пшеницы, тыс.ц									
	563	629	958	1098	639	929	740	555	873	
	Чистая прибыль, грн./га									
Озимая	70,5	335,97	311,15	106,46	196,8	168,43	13,03	23,15	558,82	
пшеница										
Яровая	45,51	271,14	204,79	69,28	261,88	105,81	9,11	23,85	309,13	
пшеница				,						

По данным табл. $\frac{1}{c_1}$ рассчитаны следующие числовые характеристики: $\overline{c_1}$ = 198,25, $\overline{c_2}$ = 144,5, $\overline{a_{11}}$ = 23,76, $\overline{a_{12}}$ = 17,31, $\overline{b_1}$ = 776000, $D(b_1)$ = 33,95 10 9 , $D(a_{11})$ = 38,28, $D(a_{12})$ = 6,29.

Для вероятности g= 0,9 находим квантиль $t_g=$ 1,28. Тогда детерминированный вариант задачи (17) – (19) будет иметь вид:

$$F = 198,25x_1 + 144,5x_2 \to \max$$
 (21)

$$23,76x_1 + 17,31x_2 \le 776000 - 1,28\sqrt{38,28x_1^2 + 6,29x_2^2 + 33,95 \cdot 10^9};$$
 (22)

$$x_1 + x_2 \le 40000, \tag{23}$$

$$x_1 \ge 0, \quad x_2 \ge 0.$$
 (24)

Решение задачи (21) – (24): $F_{\mathrm{max}} =$ 4384395,8; $x_1^* =$ 5211,39;

$$x_2^* = 23191,64.$$

Задача оптимального распределения площадей посева в ММ постановке:

$$F = 198,25x_1 + 144,5x_2 \to \max$$
 (25)

$$23,76x_1 + 17,31x_2 \le 776000, \tag{26}$$

$$x_1 + x_2 \le 40000,\tag{27}$$

$$x_1 \ge 0, \quad x_2 \ge 0$$
 (28)

имеет следующее решение: $F_{\text{max}} = 6476980,13;$ $\chi_1^* = 12965,52;$

 $x_2^* = 27034,48.$

В табл. 2 приведены оптимальные решения задач в ММ и МП постановках.

Таблица 2

Постановка	g	$F_{ m max}$, грн.	x_1^*	x_2^*	$oldsymbol{eta}$, %
MM	-	6476980,13	12965,52	27034,48	0
	0,9	4384395,78	5211,39	23191,64	32,31
МΠ	0,95	3832512,92	4556,95	20270,30	40,83
	0,99	2814792,79	3347,33	14886,89	56,54

Увеличение надёжности g выполнения ограничения (18) приводит к уменьшению прибыли. Рис. 1 иллюстрирует изменение относительной прибыли ($F_{\max M\Pi} \, / \, F_{\max MM}$) с ростом g .

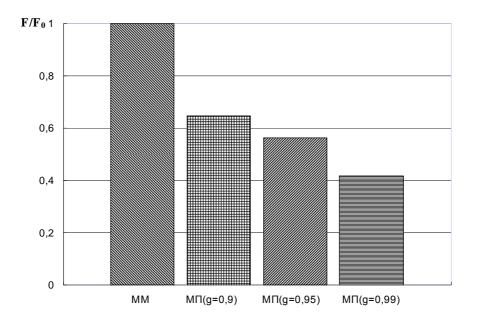


Рис. 1. Отношение прибыли в ММ и МП постановках Рис. 2 иллюстрирует относительную структуру оптимальных площадей посева (x_1 / S_0 , x_2 / S_0 , где S_0 – суммарная площадь посева в ММ постановке).

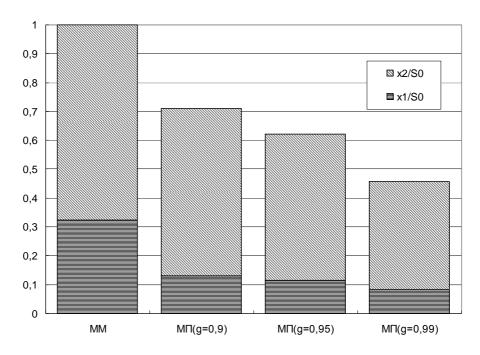


Рис. 2. Относительная структура площадей посева

Выводы. Учёт статистического рассеивания величин урожайности и спроса приводит к уменьшению величины ожидаемой прибыли. Увеличение надёжности выполнения ограничения по объёму производимой продукции также уменьшает прибыль. Например, при надёжности g=0,9 прибыль уменьшается на 32%. Таким образом, учёт стохастичности коэффициентов в задачах линейного программирования приводит к существенному изменению оптимального решения и ухудшению оптимального значения целевой функции.

ЛІТЕРАТУРА:

- 1. Тунеев М.М., Сухоруков В.Ф. Экономико-математические методы в организации и планировании сельскохозяйственного производства. М.: Колос, 1977. 224 с.
- 2. Курносов А.П. Вычислительная техника и программирование: Учебник. М.: Финансы и статистика. 1991. 344 с.
- 3. Минюк С.А., Ровба Е.А., Кузьмич К.К. Математические методы и модели в экономике: Учеб. пособие. Мн.: ТетраСистемс, 2002. 432 с.
- 4. Статистичний щорічник Сумської області за 2007 рік: статистичний матеріал. 682 с. Суми, 2008.
- 5. Статистичний щорічник Сумської області за 2004 рік: статистичний матеріал. 667 с. Суми, 2005.
- 6. Статистичний щорічник Сумської області за 2002 рік: статистичний матеріал. 696 с. Суми, 2003.
- 7. Статистичний щорічник Сумської області за 2000 рік: статистичний матеріал. –532с. Суми, 2001.

УДК 331.101.3:338.43

СУЧАСНІ ПРОБЛЕМИ МОТИВАЦІЇ СІЛЬСЬКОГОСПОДАРСЬКОЇ ПРАЦІ Линдюк А.О. Нестерович А.В.

Постановка проблеми. Соціально-економічні перетворення в країні особливо негативно позначились на розвитку села й сільського господарства. Як наслідок, знизився і так низький рівень привабливості праці у сільськогосподарських підприємствах, що спричинило небажання кваліфікованих кадрів працевлаштовуватись у цій галузі, а, з