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Dynamics of a macroeconomic system in which national income, cost of 
money and price-level are in close interaction is studied. Such an interac- 
tion is simulated with the help of discrete dynamic system in R3 [3]. The 
system has a curve formed by fixed points, which describe a balanced state 
of money, goods and service markets. It has been shown that there is a fo- 
liation which is transversal to the curve, each layer being invariant for the 
system. There are layers where balanced state can be both stable and un- 
stable. The system dynamics is changing from layer to layer. There are two 
routes of bifurcations. The first one runs on the following scheme: a fixed 
point looses its stability resulting in appearance of stable invariant ellipse 
(Neimark-Sacker bifurcations). In the ellipse periodic hyperbolic orbits ap- 
pear and cause chaos through transverse intersection of stable and unstable 
manifolds. The other way leads to chaos through bifurcation of period dou- 
bling. Minor random perturbations of the system which simulate exposure 
naturally have been viewed. In this case the system does not preserve fixed 
points and layer invariance which cause more complicated dynamics. 

 

1 Introduction 

Let’s consider the dynamics of a macro economical system ”national income” 

- ”interest rate” - ”price level”. Such a dynamics is described by ”IS-LM” 
model which is basically used for description of a current market economy 
[5, 9, 13, 15, 16]. For modeling of macroeconomic dynamics we will use a 
discrete system 

un+1 = F (un), (1) 

where un denotes a state of economy at time t = n, n Z. In the monograph 
[3] a discrete dynamic system for the above mentioned macro economical 
model has been developed and a form of the mapping F was given.  Let  

us denote u = (x, y, z) where x = P/Pe , P - price level,  Pe - balanced  

value of a price level y = (re/r)s, r is an interest rate, re is a balanced 
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value of an interest rate, z = Y /Ye , Y is national income, Ye is a balanced 
value of a national income. So all variable data are pure numbers and their 
changes reflect deviations in a certain balanced state. The system (1) in the 
coordinates (x, y, z) according to [3] takes the form 

xn+1 = xn exp(a(1 − xnym/szn)), 

yn+1 = yn exp(b(1 − xnym/szn)), 

zn+1 = zn exp(c(yn − zn)), 

(2) 

where x, y, z > 0.  All parameters a,  b,  c,  m,  s are positive ones, s being 

a marginal propensity to save (MPS), 0 < s < 1. We can say that the 
variable x is proportional to the price level, the variable z is proportional 
to the national income, and the variable y is inversely proportional to s- 
degree of the interest rate. The system has been studied in [3]. The authors 
have considered the case when the system can be viewed as one-dimensional. 

The periodic orbits are shown numerically. In our paper general theoretical 
results have been obtained, the detailed research of global dynamics of the 
system and numerical calculations for specific system parameters have been 
carried out. 

Lets first consider a simple case when m = 0. Equality m = 0 means 
that the demand does not depend on interest rate. A balanced state of the 
economics corresponds to a fixed point of system (1). It has been shown 
that the system (2) has a curve K formed by fixed points.  Dynamics of  

the system near the curve K is studied in Section 2. In Section 3 it shows 
that transversally to the curve there is foliation with invariant layers, i.e. an 
invariant surface passes through each fixed point, these surfaces are mutually 
disjoint and fill out full space. The foliation is specified as level surfaces of 

the function U = x
b 

, i. e. a surface has the form 
 

W = {(x, y, z) : 
xb 

ya 
= const}. 

The bifurcation of the topological structure of the system orbits takes place 

from layer to layer with the layers preserving their balanced state. There 
are layers with stable balanced states and layers with chaotic dynamics near 
balanced states. In Section 4 it shows such a topological structure exists at 
any m > 0. More than in Section 5 it has been proved that the system (2) 
for arbitrary m > 0 is topologically equivalent to the system with m = 0 and 

a changed a parameter. 
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Environment effect. The environment in which the microeconomics is 
developing affects the system. The external influence can be considered as 

uncontrolled perturbation. To simulate the external influence let’s assume 
that the perturbation depends on time n, it is small and added to the mapping 
as a whole. So we have an equation 

xn+1 = xn exp(a(1 − xnym/szn)) + εq1(n), 

yn+1 = yn exp(b(1 − xnym/szn)) + 

εq2(n), zn+1 = zn exp(c(yn − zn)) + 

εq3(n), 

(3) 

 

where ε is a small positive number, qi(n) takes random variables on a segment 

[-1, 1] and chaotically depends on time n. To simulate perturbation qi(n) we 
use relationship 

 

qi(n + 1) = 1 − 2q2(n), qi ∈ [−1, 1], 

where initial value qi(0) is separately specified for each i = 1, 2, 3. It is 
known [4, 12], that for almost every initial value qi(0) (according to Lebesgue 

measure) on the orbit qi(0)n is chaotic and distributed along the segment 
[-1,1] with a density 

1 
ρ = 

π(1 − x2)1/2 
.
 

Computer software. The investigation is attended with numerical ex- 
periments. Numerical calculations have been carried out according to the 
algorithms developed and substantiated by the author [7]. A computer pro- 
gram for the given algorithms and visualization has been developed by the 
St. Petersburg University alumnus Michael Senkov. 

 

2 Dynamics near balance states. 

Let’s consider a discrete dynamic system (2). As it has been stated above 
first we’ll see the case of m = 0, that will somehow simplify calculations, but 
reflects the gist of the dynamic process. This assumption will be true for 
the current and the following sections. The balance states are determined by 

fixed points of the system (1), i.e. by the equation 
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F (u) = u. 
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Passing to the coordinates (x, y, z) and to the system (2) we get the equalities 
xy  1 = 0 and y  z = 0. Thus, the fixed points fill the curve K =   (x, y, z) : 
xy = 1, y = z . Projection of K on (XY )-plane is a hyperbola xy = 1 and 
projection of K on (Y Z)-plane is a straight y = z. Lets study economy 

dynamics near to balance states K. Topological type of a fixed point u∗ of 

the system (1) is determined by eigenvalues λ of the differential DF (u∗) at 

u∗. The invariance of K leads to the tangent vector of K be an eigenvector 
to the differential. Moreover the restriction F on K is an identical mapping 

F (u) = u. This means that λ = 1 is an eigenvalue of DF K. On the K curve 
the right-hand part differential of (2) has the following form 

  
1 − a 0 −ax2  

D =  −by2 1 −b 

0 cz 1 − cz 

 . (4) 

 

The multipliers λ of the fixed points are determined by the equation 

det(D − λE) = (1 − λ)(λ2 − λ(2 − a − cy) + 1 − a + (b + a − 1)cy). 

It is clear that the multiplier λ = 1 corresponds to the fixed point curve. The 

rest of the multipliers λ1,2 are determined by the equation 

λ2 − λ(2 − a − cy) + 1 − a + (b + a − 1)cy = 0. (5) 
 

Hence we have    
∆ 

λ1,2 = 
2 

, 

where the discriminant ∆ = c2y2−2cy(a+2b)+a2. Easy to check that λ1,2 ̸= 
1 as y > 0. From this it follows that the eigenspace of λ1,2 is transversal to  
K. If |λ1,2| < 1, the differential contracts to K. If |λ1,2| > 1, the differential 
expands from K. If |λ1| < 1 and |λ2| > 1, we have hyperbolic dynamics near 
to K. If the discriminant ∆ < 0, λ1 and λ2 are complex conjugate and the 
differential rotates around K. The discriminant will be negative when y has 
the meanings between the roots of y1 and y2 of the equation 

c2y2 − 2cy(a + 2b) + a2 = 0, (6) 
 

where  
y12 
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Figure 1: Dynamics near the fixed points K of the system (2). 

 
For a = 2.4,  b = 0.87,  c = 0.9 there is y1 = 0.852,  y2 = 7.51.  Thus at  

0.852 < y < 7.51 the multipliers λ12 are complex conjugate. In this case a 

free member of the equation (5) is a square of multiplier modulus 

1 − a + (b + a − 1)cy = λ1λ2 = |λ|2, 

that gives the opportunity to determine the range of stability and instability 
of the fixed points. For a = 2.4,  b = 0.87,  c = 0.9 and y  = 0.852 there is  
λ 2 = 0.3406, i.e. in the plane transverse to the curve of the fixed points  
we have a stable focus. Numerical experiments show that when a term 1 
a + (b + a 1)cy is equal to 1, the Neimark-Sacker bifurcation takes place 

i.e. the balance state loses stability and stable invariant ellipse arises from 
the balance point. For a = 2.4, b = 0.87,  c = 0.9 the bifurcation occurs at 
y = 1.174743. On invariant ellipse the orbits may be periodic or recurrent. 
Note that with practical point of view a recurrent orbit looks as periodic 
with big period. So we can consider the orbits in the ellipse as periodic. On 
the K curve between points 0.852 < y < 1.174743 there are stable balanced 
states, but unstable balanced states emerge for y > 1.174743. By the Pliss’s 
reduction principle [10, 11, 8] near the K curve through each fixed point there 
is an invariant disk, which is a stable manifold W s when λ1,2 < 1 (0.852 < 
y < 1.174743), or an unstable manifold W u when λ1,2 > 1 (1.174743 < y < 
7.51).  In the left-hand Fig.  1 an invariant  disk W u(B) of balanced state  B 
(0.851, 1.175, 1.175) is shown. On the W u(B) there is an unstable balance 



6  

∞ 
−∞ 

− 

 
 
 
 

B and an invariant stable ellipse E. An orbit starts in the B point as n = 
and ends in E for n = + . On the K curve between two points in the interval 

0.700 < y < 0.852 there are balanced states with two negative multipliers 
which are modulo less than 1. When 0.685 < y < 0.700 a hyperbolic state 
occurs i.e. one multiplier is modulo more than 1, but the other is modulo less 
than 1. When y = 0.685, one multiplier becomes equal to 0. It means that 
Jacobian matrix of the right-hand part of the system (2) is detD = 0. When 
y < 0.685, one multiplier is positive, while the other is negative. In this case 
the differential changes orientation (in an unstable manifold). The Jacobian 

matrix sign determines if the dynamic system preserves its orientation in this 
particular point. Thus the equation detD(x, y, z) = 0 specifies the Π surface 
where the system changes its orientation. So every balanced state in the 
plane transversal to K may be stable, unstable (with complex multipliers), 
and hyperbolic. In the last case one multiplier is negative and the other 
changes the sign on Π. In the right-hand Fig. 1 one can see intervals on K: 

H = {hyperbolic fixed points}; S = {stable fixed points }; U C = {unstable 

fixed points with complex multipliers}. 

 
3 Foliation with invariant layers 

In this part we are going to prove that there is a function U (x, y, z), the level 
surfaces U (x, y, z) = const of which are invariant for a discrete system 

xn+1 = xn exp(a(1 − xnzn)), 

yn+1 = yn exp(b(1 − 

xnzn)), zn+1 = zn exp(c(yn 

− zn)). 

(7) 

Function U (x, y, z) is an analog of the integral for autonomous systems of 
differential equations. To obtain the function U we note that the first and the 
seconde equation of (7) differ in powers a and b. If the first equation is raised 
to power b and the second equation is raised to power a, we obtain uniformly 

expression exp(ab(1 xnzn)). This gives an opportunity to construct the 
function U . 

Proposition 1. Level surfaces of the function 

xb 

U = 
ya
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are invariant for the system (7). 
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Proof. A level surface H is determined by the equation U (x, y, z) = 
const. Invariance of H means as an orbit of (7) starts at H, it remains in H 

all time. In other words a value of the function U is unchanged by iteration. 
So, to prove the invariance we have to check the following equality 

U (xn, yn, xn) = U (xn+1, yn+1, zn+1). 
 

Indeed,  
xb xb exp(ba(1 − xnzn)) xb 

U (xn+1, yn+1, zn+1) = n+1
 = n = n = U (xn, yn, zn). 

a 
n+1 

 

Proving has been completed. 

ya exp(ab(1 − xnzn)) a 

 

 
 
 

Figure 2: Projection of the fixed point curve K = {(x, y, z) : xy = 1, y = z} 
and invariant layers W = {(x, y, z) : x = hya/b, h = const} on XY -plane. 

Each surface 
 

W = {(x, y, z) : x = hya/b}, h = const 

is transversal to the fixed point K curve. So,  invariant  foliation caused  
by stable  W s and unstable W u discs exists not only around  K  curve but  
it is determined globally. Since the variable z does not appear implicit in 

U , each invariant layer W = {(x, y, z) : x = hya/b}, h = const is a 
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linear surface with straights parallel to a Z-axis. The system on the surface 
W = {(x, y, z) : x = hya/b} is specified as 

yn+1 = yn exp(b(1 − hya/bzn)), 
n 

zn+1 = zn exp(c(yn − 

zn)), 

(8) 

 

where h > 0 specifies an invariant layer. Thus h = 1 specifies the surface 
passing through a balanced state (1,1,1). For any W (h) surface a balanced 
state is determined by the equality 

xy = 1, y = z, x = hya/b. 

Whence it happens that a balanced state has 
 

   b b b  

(h a+b , h− 
a+b , h− 

a+b ) 

coordinates for each W (h) layer. 
 

 

Figure 3: Appearance of a stable invariant ellipse at h changing in the interval 
0.8 - 0.58. 

Let us see the changing of the system dynamics in the W (h) = (x, y, z) : 

x = hya/b layers in dependence on h values. In other words, we will observe 
the system (8) bifurcation at h changing. In each W (h) layer there is a point 
W (h) K which is fixed for the system (8). If the layer is fixed, we will 
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denote the fixed point as K∗. We can consider the fixed point K∗ as origin of 
the layer. Let us consider the system at (8) a = 2.4; b = 0.9; c = 0.9. On the 
W (h = 1) layer there is a balanced state K∗(1, 1) with complex multipliers. 
If the value of h decreases, the type of stability starts to change. So, on the 
W (h = 0.8) layer (see a left-hand Fig. 3) there is a 3-periodic invariant set 
R = R1, R2, R3 , from which orbits pass to the stable balanced state K∗. 
With changing of h parameters from 0.8 to 0.58 a stable invariant ellipse 
A appears due to stable balanced state, while balanced state K∗ loses its 
stability, i.e. the Neimark-Sacker bifurcation occurs (see a right-hand Fig. 
3). At the same time the invariant set R increases in size. When h parameters 
tend to decrease, 3-periodic hyperbolic orbit P appears in the stable A ellipse 
(see a left-hand Fig. 4). When h reaches the value of 0.515970, an unstable 
manifold W u(P3) crosses transversally a stable manifold W s(P1) of the P1 

(0.8037147 1.33638665) orbit (see a right-hand Fig. 4). Simulation of these 
manifolds and their estimation have been carried out in accordance with 
[?, 7]. By the Smale’s theorem [2] a transversal intersection generates chaos 
near the intersection points. The A set loses its stability and merges with 
the R set forming one invariant set Ω, which is the closure of the W u(P ) 
unstable manifold and the P orbit (see a left-hand Fig. 4). It should be 

 

 

Figure 4: Chaos on the invariant layer W (h = 0.515970) , the closure of the 
unstable manifold W u(P ). Intersection of unstable and stable manifolds of 
the 3-periodic orbit P . 

noted that the orbit that starts near stable state K∗(1.1977742, 1.1977742), 
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reaches the Ω set and then wanders within it. The B (1.2, 1.2) point orbit is 
shown in a left-hand Fig. 5. The E entropy of the system in the Ω invariant 

set has been evaluated as an exponent (on base 2) of the curve length growth 
[6]. The estimate from below E = 0.69314. As the entropy is a measure of 
chaos, then we can say, that in the Ω set the system allows chaos. The orbit 
of the B point clearly shows this in the left-hand Fig.5. 

 

 

Figure 5: Orbit of the (1.2, 1.2) point on the invariant W (h = 0.515970) 
layer. Chaos in a W (h = 0.3) layer is in a scale of 1:10. 

 

Further decrease of the h parameter leads to more chaos. Numerical 
experiments show that the system (2) has layers, where chaos in the attrac- 
tors reaches the enormous size In the right-hand Fig. 5 a chaotic set in a 
W (h = 0.3) layer is presented in the scale 1:10. This set is ω-limited for any 

orbit, which starts near a K∗ fixed point (1.3886835 1.3886835). Another 
picture of bifurcations is observed with the increase of h parameters. 

The system (8) on a W (h) layer, h > 0.8 has a K∗ stable balanced state 
up to h = 4.02787. At first the multipliers are complex, and then they 

become real. When h = 4.02787 the K∗ balanced state loses its stability 
and becomes hyperbolic with one multiplier which is less than -1. Unstable 

manifold W u(K∗) of the hyperbolic point K∗ (where the system changes 
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its orientation) ends in 2-periodic stable orbit A. With the further increase 
of h > 4, the 2-periodic orbit A loses its stability and a period-doubling 

bifurcation occurs. The doubling period bifurcation is apparently repeated 
at sufficiently large h. 

 

4 General case study 

Let us consider the discrete system (2), where the m parameter takes positive 
values.  The fixed points of the system are determined by  the equalities   

1 = xym/sz, y = z. Thus, the curve of balanced states has the form 

K = {(x, y, z) : xy1+m/s = 1, y = z}. 

It is not difficult to prove that the dynamical system with an m arbitrary 
has the same foliation with invariant layers, as for m = 0. This foliation is 
defined as the level surfaces of function 

xb 
U = . 

ya 
 

Each surface 
 

 
 

Figure 6: Dynamics near the balanced states K curve. 

 
W = {(x, y, z) : x = hya/b}, h = const 



12  

n 

ya 

 
 
 
 

is invariant for the system (2). The system on the W surface is specified in 
the form of 

yn+1 = yn exp(b(1 − 

hya/b+m/szn)), zn+1 = zn 

exp(c(yn − zn)), 

 
(9) 

where the value h > 0 specifies an invariant layer. Thus, the system (2) has 
the same foliation as in the case of m = 0, but the dynamics of the layers 
differs from the m = 0 case. Let us consider the differences that arise when 

m > 0. To be precise we will consider the system (2) when a = 2.45, b = 
0.6, c = 0.9, m = 0.25, s = 0.5.  The dynamics of a system near a curve 

of K balanced state is shown in Fig.  6.  The W  = {(x, y, z) : x
b     

=  h} 
invariant layer corresponds to each point on the K curve. The layers are 
transversal to the K curve. They are not shown in Fig. 6 but only the 
periodic orbits stable in the layers are. The O (1,1,1) balanced state is 
hyperbolic. The unstable manifold W u(O) which ends in 2-periodic stable 
orbit is shown in the left-hand Fig. 6. In W u(O) the system changes the 
orientation at each iteration. In the left-hand Fig. 6. it is seen that in the 
layers below the O point layer a period-doubling bifurcation arises. In the 
right-hand Fig. 6, the dynamics in layers above the layer passing through 
the O (1,1,1) balanced state is shown. The increase of y and z results in the 
bifurcation of balanced states (as well as in the case of m = 0). First, the 
balanced state becomes stable in the layer. This happens in W (h = 0.3083), 
where the balanced state has (1.234603, 1.234603) coordinates. Then the 
complex multipliers in W (h = 0.28) appear. Finally, the balanced state loses 
its stability in W (h = 0.2311) and the the Neimark-Sacker bifurcation takes 
place. In the left-hand Fig. 7 the dynamics near the invariant stable ellipse 
in a W (h = 0.18) layer is shown. Here there is a K∗ (1.359516, 1.359516) 
unstable balanced state, and a 5-hyperbolic periodic orbit H places near the 
ellipse, H1 having (1.289692, 1.235095) coordinates. The unstable 
manifold W u(H) tends to a stable ellipse with one end and to the P 5-
stable periodic orbit with the other, P1 having (1.156926 1.338456) 
coordinates (see a left- hand Fig.7). The orbit, which starts near the K∗ 
point, ends on the ellipse. Further reduction of h leads to the bifurcation 
of the invariant ellipse to the G set, which is shown in the right-hand Fig.7 
for the W (h = 0.155) layer. The G invariant set is limiting for any orbit, 
starting near the K∗ point. Estimating the entropy as an exponent of the 
curve length growth during iteration [6], the G chaotic invariant set can 
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be shown. When h = 0.15075, the G limiting set of any orbit starting 
near the K∗ point becomes large 
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Figure 7: Dynamics near invariant ellipse in the W (h = 0.18) layer. Invariant 

set G in the W (h = 0.155) layer. 

 
in size, the dynamics of the system being similar to the one shown in the 
right-hand Fig. 5. 

 
5 Equivalence  of  systems  with  m ≥ 0, and 

m = 0 

Comparing the dynamics of the m 0 general case, and the m = 0 par- 
ticular case, one can notice a certain analogy. Indeed, there is a topological 

equivalence of these systems, however, only if the a parameter is changed. 
Proposition 2. A mapping F of the form 

 

X  = xym/s, 

Y = y, 

Z = z 

(10) 

 

converts a discrete system 

xn+1 = xn exp(a(1 − 

xnym/szn)), yn+1 = yn exp(b(1 − 

xnym/szn)), zn+1 = zn exp(c(yn 

− zn)) 

 
 

 
(11) 
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into the system of the following type 

Xn+1 = Xn exp(d(1 − 

XnZn)), Yn+1 = Yn exp(b(1 

− XnZn)), Zn+1 = Zn 

exp(c(Yn − Zn)), 

 
 

 
(12) 

 

where d = a + bm . 
Proof. It is necessary to show a commutative character of the diagram 

(xn, yn, zn) −→ (xn+1, yn+1, zn+1) 

F ↓ F ↓ 

(Xn, Yn, Zn) −→ (Xn+1, Yn+1, Zn+1) 
 

or equality 
 

Xn+1(F (xn, yn, zn)) = Fx(xn+1, yn+1, zn+1), 

Yn+1(F (xn, yn, zn)) = Fy(xn+1, yn+1, zn+1), 

Zn+1(F (xn, yn, zn)) = Fz(xn+1, yn+1, zn+1). 

 

(13) 

 

For the first equation we have 

Xn+1 = Xn exp(d(1 − XnZn)) = xnym/s exp((a + bm/s)(1 − xnym/szn)) = 
 

xn exp(a(1 − xnym/szn))ym/s exp((bm/s)(1 − xnym/szn)) = xn+1ym/s. 

For the second equation we have 

Yn+1 = Yn exp(b(1 − XnZn)) = yn exp(b(1 − xnym/szn)) = yn+1. 

The last equation is trivial, as the F mapping is identical in y and z. The 
proving has been completed. 

Thus, the systems (11) and (12) are topologically equivalent. That is 
why the system (11) for a = 2.45, b = 0.6, c = 0.9, m = 0.25, s = 0.5 is 
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equivalent to the system (12), where d = 2.75, b = 0.6, c = 0.9. The system 
(11) has foliation with the invariant layers of the form 

 
xb 

W (h) = {(x, y, z) : h = 
ya 

}, 
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but the system (12) has foliation with the invariant layers of the form 
 

Xb 

W (H) = {(X, Y, Z) : H = 
Y d 

}. 

We can show that the F mapping converts W (h) layer i n the W (H) one, 
both systems coinciding on these layers. Taking into account that x = P/Pe, 

y = (re/rs), P are price levels, r is the interest rate, X = P/Pe((re/r)s)m/s = 

P/rm rm/Pe, i.e. from economic point of view  the  X  coordinate  is 
propor- tional to the price level and inversely proportional to the interest 
rate in m power. 

 

6 Uncontrolled perturbation of the system 

Usually an economic system is subject to uncontrolled and random pertur- 
bation. In this section we will examine the dynamics of a perturbed system 
of the (3) type, where ε is a small positive number 

qi(n + 1) = 1 − 2q2(n), (14) 

Initial values qi(0) [ 1, 1] are specified for each i = 1,  2,  3 at random.  
Thus the 6-dimensional system consisting of the system equations (3) and 
equations (14), i = 1, 2, 3 is analysed. It should be expected that the 

described perturbations do not preserve invariant foliation. In each invariant 
layer of (2) there is an attractor with a certain area of attraction. The 
above described results show that the attractors are formed out of the stable 
balanced states of the K curve, and the loss of stability results in appearance 
of the attractors which are changing continuously from layer to layer. Layer- 
by-layer integration of such attractors creates a set which does not disappear 
at perturbation. This can be seen in the right-hand Fig. 8, where the (1,1,1) 
point orbit of the perturbed system (3) is shown for the a = 2.45,  b  =  

0.6, c = 0.9, m = 0 parameters and with the ε = 0.01 chaotic disturbing 
values. 

It should be noted that the chaotic perturbation causes the orbit to move 
up and down near the attractors of the unperturbed system. The perturba- 
tion can not only transport the orbit into the chaotic region (see the upper 
part of the right-hand Fig.8), but also turns it back from this area. From 
the economic point of view there are perturbations, which can be reduced to 
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Figure 8: Orbit of (1,1,1) point of the perturbed system (3) ε = 0.01. Orbit 

of (1,1,1) point of the system(15) with ε1 = 0.01, ε2,3 = 0. 

 

zero or be made insignificant, but there are perturbations, which we can not 

reduce to a significant extent. For example, the Central Bank can control 
the interest rate to avoid chaotic perturbations. But we can not get rid of 
chaotic perturbations of the price level. Thus, it is desirable to find out, what 
perturbations influence the system dynamics greatly and which are not. For 

this purpose let us consider the system of equations of the following type 

xn+1 = xn exp((1 − xnym/szn)) + ε1q1(n), 

yn+1 = yn exp(−b(1 − xnym/szn)) + 

ε2q2(n), zn+1 = zn exp(c(yn − zn)) + 

ε3q3(n), 

(15) 

 

where ε1, ε2 and ε3 are different, and qi obey system (14). It should be noted 
that the perturbation of the last equation preserves invariant layers, because 
each layer is a ruled surface parallel to Z axis. Thus, the perturbations of 
the ε1 = 0, ε2 = 0 type and ε3 = 0 preserve layers of the unperturbed 
system and perturb it in a layer. This means that the perturbation of the 
national income (production) does not change significantly the dynamics 
near the attractors on the layers. Weak monitoring of the price levels 
leads to the perturbation of the first equation. In the right-hand Fig. 8 the 
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(1,1,1) point orbit of the system (15) with the ε1 = 0.01, ε2,3 = 0 is shown. 
The results of the numerical calculation show that the price level 
perturbation leads to the 
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growth of y and z (national income). The increase of y means the interest 
rates reduction. It should be noted, that the strongest bifurcation toward 
chaos occurs at the weak control of the interest rate. Numerical experiments 
for the system (15) with ε2 = 0.01 ε1 = ε3 = 0, show that the behavior of  
the solutions of such a system practically does not differ from the perturbed 
system of a general type (3) with ε = 0.01 (see the left-hand Fig. 8). 

Small perturbations of a general form leads to the fact, that the orbit 

starts moving along balanced states and first gets into an unstable balanced 
state, and then into the layer with chaos. The magnitude of the chaos may 
both increase and decrease while perturbing. 

 

7 Conclusion 

The study of a discrete macroeconomic model (2) has been conducted. It 
has been shown that the system (2) with m > 0 is topologically equivalent 
to the system (2) with m = 0. It has a curve filled with a balanced state, 

and transversally to the curve there are invariant level surfaces of the U = x
b

 

function which form foliation. 

We can assume that a balanced state is the center of each invariant sur- 
face. There is an attractor on each layer which almost all orbits tend to. 
The attractor can be a balanced state or has a rather complicated (chaotic) 
structure. When a level surface changes, bifurcation of the system dynamics 
from a steady state to chaos takes place. It should be noted that chaos in 
the macroeconomic model is an intrinsic characteristic of the system, and 
it does not always result in economic crisis. In this case, chaos means the 

impossibility of long-term forecasting. The numerical results have shown 
that there are layers, where chaos reaches the enormous degree. Then the 
imbalance of the economic system takes place and a crisis breaks out. Minor 
external perturbation may destroy the above described topological structure 
of the system orbits. Numerical experiments and economic practice shows 
that not all perturbations influence the dynamics of the system equally. So, 
the national income perturbation (z) does not change the invariant foliation, 
the level of prices perturbation (from x) leads to weak changes in dynamics 

preserving the attractors of the layers. The perturbation of the interest rate 
influences the system dynamics most significantly. Minor perturbations lead 
to the fact that the orbit starts moving along balanced states and gets first 
in the unstable balanced state and then into the layer, where there is chaos 
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which can assume enormous proportions. 
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