МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ СУМСЬКИЙ ДЕРЖАВНИЙ УНІВЕРСИТЕТ

ІНФОРМАТИКА, МАТЕМАТИКА, АВТОМАТИКА

IMA :: 2017

МАТЕРІАЛИ та програма

НАУКОВО-ТЕХНІЧНОЇ КОНФЕРЕНЦІЇ

(Суми, 17-21 квітня 2017 року)

Суми Сумський державний університет 2017

Распознавание сигнала, который искажен нелинейным устройством

Зарецкий Н.А., *студент* Сумский государственный университет, г. Сумы

Цель работы — оперативное распознавание сигнала по результату его искажения нелинейным объектом с экспоненциальной статической характеристикой, параметры которой неизвестны.

На выходе нелинейного устройства анализируется сигнал вида:

$$y(t) = Ae^{\alpha k f_j(t + \tau_j)} + q$$
 (1)

IMA:: 2017

где коэффициенты A, α , k, а также и q — неизвестные, $f_j(t+\tau_j)$ — один из эталонных сигналов, который необходимо распознать, τ_j — смещение во времени между f_j (t) и y(t).

По текущим значениям y(t) и его производных нужно распознать эталонный сигнал f_i (t).

Предлагаемый алгоритм решения основан на вычислении функций непропорциональностей по значению 1-го порядка. Для заданных параметрически числовых функций $\phi(t)$ и $\psi(t)$ эта непропорциональность функции $\phi(t)$ по функции $\psi(t)$ имеет вид:

$$@v_{\psi(t)}^{(1)} \varphi(t) = \varphi(t) - \psi(t) \frac{d\varphi}{d\psi}$$

$$(2)$$

В случае, когда между функциями существует пропорциональная зависимость

$$\varphi(t)=k \ \psi(t), \tag{3}$$

Непропорциональность (2) равняется нулю независимо от значения k в (3).

Работа алгоритма и программы проверена на контрольном примере. Результаты подтверждают, что если распознавание осуществляется по эталонному сигналу, непропорциональность равняется нулю.

Руководитель: Авраменко В.В., доцент