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Induced magnetization and power loss for a periodically driven system of ferromagnetic
nanoparticles with randomly oriented easy axes
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We study the effect of an elliptically polarized magnetic field on a system of noninteracting, single-domain
ferromagnetic nanoparticles characterized by a uniform distribution of easy axis directions. Our main goal is to
determine the average magnetization of this system and the power loss in it. In order to calculate these quantities
analytically, we develop a general perturbation theory for the Landau-Lifshitz-Gilbert (LLG) equation and find its
steady-state solution for small magnetic field amplitudes. On this basis, we derive the second-order expressions
for the average magnetization and power loss, investigate their dependence on the magnetic field frequency,
and analyze the role of subharmonic resonances resulting from the nonlinear nature of the LLG equation. For
arbitrary amplitudes, the frequency dependence of these quantities is obtained from the numerical solution of this
equation. The impact of transitions between different regimes of regular and chaotic dynamics of magnetization,
which can be induced in nanoparticles by changing the magnetic field frequency, is examined in detail.
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I. INTRODUCTION

The study of the magnetization dynamics in single-domain
ferromagnetic particles (nanoparticles) is of large importance
for both fundamental research and practical applications.
The dynamical effects related to a sudden change in the
magnetization behavior, which occurs as a control parameter
is varied, are of the greatest interest. One of these effects is
the switching (or reversal) of the nanoparticle magnetization.
Depending on the application, the switching process has to be
properly optimized. In particular, to reduce the switching time
and switching magnetic field in magnetic recording devices,
the so-called precessional switching [1–5] and microwave-
assisted switching [6–11] have recently been proposed. The
magnetic resonances in nanoparticles and transitions between
different dynamical states of the magnetization can also play
an important role in hyperthermia [12–15], because a strong
change of nanoparticle heating is expected to occur in the
vicinity of these resonances and transitions. A remarkable
feature of the deterministic dynamics of magnetization in
nanoparticles driven by periodic magnetic fields is that it
can be chaotic [16–19]. From a theoretical point of view, the
transitions between the regular and chaotic regimes of the
magnetization dynamics and routes to chaos have a special
interest.

The nonlinear magnetization dynamics in ferromagnetic
nanoparticles driven by a circularly polarized magnetic field is
well studied for the particular case of uniaxial nanoparticles,
whose easy axes are perpendicular to the polarization plane
[20,21] (see also Ref. [22], and references therein). Using
the deterministic Landau-Lifshitz-Gilbert (LLG) equation
[23,24], these authors have shown that the magnetization
dynamics is always regular and, in the steady state, only
periodic and quasiperiodic dynamical regimes exist. In addi-
tion, the stability conditions for periodic regimes and induced
magnetization are derived in [25], the phase diagram of
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possible regimes in the plane “amplitude–frequency” of the
driving magnetic field is obtained in [26], the power loss for
periodic regimes is calculated in [27,28], and the influence of
transitions between different dynamical regimes on the power
loss is studied in [29]. Some thermal effects in such systems,
including thermal enhancement of the induced magnetization
and resonant suppression of thermal stability of these regimes,
are investigated in [30,31].

Due to the symmetry of the model, many of the above
results were obtained analytically. At the same time, a number
of important features of the magnetization dynamics (e.g.,
some higher-order resonances and chaotic dynamics) are
symmetrically forbidden in this model. Therefore, in this
paper we consider a more general case when the driving
field is elliptically polarized and the nanoparticle easy axis
has a random direction. Here, our interest is focused on
understanding how the nonlinear resonances and transitions
between different regimes of the magnetization dynamics
affect the magnetic properties of nanoparticle systems.

The paper is structured as follows. In Sec. II, we describe the
model, introduce the basic equations, and define the quantities
of interest. A general perturbation theory for the LLG equation
is developed in Sec. III. In the same section, we determine the
steady-state solution of this equation in the first and second
orders of the perturbation theory. Section IV is devoted to
studying the average magnetization of the reference system
induced by the elliptically polarized magnetic field. The
dependence of the power loss on the magnetic field amplitude
and frequency is studied in Sec. V. Finally, our results are
summarized and discussed in Sec. VI.

II. GENERAL FRAMEWORK AND BASIC EQUATIONS

We consider a system of ferromagnetic nanoparticles driven
by the magnetic field H = H(t), which is elliptically polarized
in the xy plane, i.e.,

H = H cos (ωt)ex + ρH sin (ωt)ey. (2.1)

Here, H and ω are, respectively, the amplitude and angular
frequency of the magnetic field; ex , ey , and ez are the unit
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vectors of the Cartesian coordinate system xyz; and ρ is
the dimensionless parameter. The sign of this parameter
characterizes the direction of field rotation (at ρ < 0 the
magnetic field rotates in the clockwise direction and at ρ > 0
in the counterclockwise direction), and its values ρ = 0 and
|ρ| = 1 correspond to the linearly and circularly polarized
magnetic fields.

The nanoparticles of the system are assumed to be noninter-
acting and single-domain (this is so-called Stoner-Wohlfarth
particles [32]), and distributed in an insulating matrix. The only
difference between them is the direction of their anisotropy
axes (easy axes) that, for each nanoparticle, is characterized
by the unit vector

ea = sin θa cos ϕaex + sin θa sin ϕaey + cos θaez, (2.2)

where θa and ϕa are the polar and azimuthal angles of ea . In
the following analysis, we assume that the directions of this
vector are random and uniformly distributed over the sphere.
This means that the angles θa and ϕa are also random and
their joint probability density P (θ,ϕ) that θa = θ and ϕa = ϕ

is given by

P (θ,ϕ) = 1

4π
sin θ. (2.3)

The magnetic state of each nanoparticle in the system
is described by the magnetization vector M = M(t), whose
dynamics is governed by the deterministic LLG equation
[23,24]

d

dt
M = −γ M × Heff + α

M
M × d

dt
M. (2.4)

Here, γ (>0) is the gyromagnetic ratio, α(>0) is the dimen-
sionless damping parameter, M = |M| = const, and the cross
sign denotes the vector product. The effective magnetic field
Heff = Heff(t) acting on the magnetization is taken in the
following form:

Heff = Ha

M
(M · ea)ea + H, (2.5)

where Ha is the magnetic anisotropy field and the dot
denotes the scalar product. Introducing the dimensionless
magnetization, m = M/M (|m| = 1), and the dimensionless
effective magnetic field, heff = Heff/Ha , the LLG equation
(2.4) can be reduced to the form

	ṁ = −m × heff − αm × (m × heff). (2.6)

Here, 	 = 1 + α2, the overdot denotes differentiation with
respect to the dimensionless time τ = ωat , ωa = γHa is
the characteristic angular frequency of the magnetization
precession, and, according to (2.1) and (2.5),

heff = (m · ea)ea + h cos (�τ )ex + ρh sin (�τ )ey (2.7)

with h = H/Ha and � = ω/ωa being, respectively, the di-
mensionless amplitude and dimensionless angular frequency
of the driving magnetic field H. Because the direction of ea

is random, the dynamics of m in different nanoparticles of
the system is, in general, different. Therefore, the average
magnetic properties of nanoparticles play a key role in
describing the corresponding magnetic properties of such a
system.

In this paper, we are interested in two characteristics
of nanoparticles. The first is the average dimensionless
magnetization, 〈m〉, induced by the elliptically polarized
magnetic field. Here, the overbar denotes averaging over the
dimensionless time interval T ,

(·) = 1

T

∫ T

0
dτ (·), (2.8)

and the angular brackets denote averaging over all possible
orientations of the unit vector ea ,

〈(·)〉 =
∫ π

0
dθ

∫ 2π

0
dϕ P (θ,ϕ)(·). (2.9)

It should be noted that the choice of T depends on the
dynamical regimes of m. In particular, in the case of the
steady-state dynamics the time interval T should be chosen
as T = 2π/�. In contrast, if m exhibits chaotic dynamics,
then the following condition should be satisfied: T � 2π/�.
The second quantity of our interest is the reduced power loss
defined as q = 〈Q〉/(ωaHaMV ), where Q = V Heff · dM/dt

is the instantaneous power loss per nanoparticle of the volume
V . Using the LLG equation (2.4), this quantity can be written
as follows:

q = α〈ṁ2〉. (2.10)

If the nanoparticle system of the volume V contains N

nanoparticles, then the induced magnetization and power
loss density for this system are expressed through the above
introduced quantities 〈m〉 and q as nMV 〈m〉 and nωaHaMV q,
respectively, where n = N/V is the concentration of nanopar-
ticles.

Let us now formulate the conditions under which this model
is justified. First of all, we assume that the strength of the
exchange interaction between spins is the largest energy scale
in the model. In this case, the magnetization magnitude is
approximately constant and the magnetization rotation can
be described by the LLG equation (2.4). Since the rotation
is considered to be coherent, the nanoparticles should be
single domain. This implies that the nanoparticle diameter
d must be less than some critical value d2 which, depending
on the material, ranges from a few nanometers to several tens
or even hundreds of nanometers (for example, d2 � 4.7 nm
for Ni08Fe02, d2 � 19 nm for Fe, and d2 � 480 nm for MnBi
[33]). In general, because of thermal fluctuations, the coherent
rotation of magnetization in nanoparticles with d < d2 is ran-
dom. In the framework of the stochastic LLG equation, these
fluctuations are usually accounted for by adding a Gaussian
white noise to the effective magnetic field [34] (for recent
reviews see, e.g., Refs. [35] and [22], and references therein).
However, if the thermal energy kBT (kB is the Boltzmann
constant, T is the absolute temperature) is much less than the
smallest energy scale in the system, V w [w = M min (Ha,H )
is the scale energy density], then thermal fluctuations can
safely be neglected. This occurs at d � d1 = (6kBT /πw)1/3,
and thus the magnetization is homogeneous and its dynamics
is approximately deterministic if the nanoparticle diameter
satisfies the conditions d1 � d < d2. The condition d1 � d

can also be used to evaluate the maximum temperature at
which the deterministic approximation still holds (this is the
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case if the maximum temperature is less than the blocking
temperature). Note that these conditions are not too restrictive
and in some cases can be satisfied even at room temperatures
[29].

In addition, we use the approximation of noninteracting
nanoparticles, i.e., the average interparticle distance R is
assumed to be so large that the total magnetic field produced
by the surrounding nanoparticles is negligibly small compared
to the anisotropy and external magnetic fields. In the dipole
approximation, this distance can roughly be estimated from
the condition (R/d)3 � M/ min (Ha,H ). At first sight, even
with the above assumptions, the choice of the effective
magnetic field in the form (2.5) is still not satisfactory.
The reason is that Heff does not contain the demagnetizing
magnetic field, which always exists in ferromagnetic samples
and, in general, cannot be neglected. But in the case of
single-domain particles of spherical shape the demagnetizing
field equals −(4π/3)M and, since M × M = 0, this field
does not influence the magnetization dynamics and can be
ignored in Heff . Note that our approach can also be applied to
conducting nanoparticles. This is because the main effect of
conductivity is the renormalization of the damping parameter
α [36,37]. Finally, according to definition (2.9), the quantities
of our interest, 〈m〉 and q, depend on the probability density
P (θ,ϕ) of easy axis directions. The choice of the uniform
distribution for these directions is motivated by both physical
(zero magnetization of nondriving systems) and mathematical
(simple integration over the angles θ and ϕ) reasons. However,
any other choice of P (θ,ϕ) is also possible; the only problem
in this case is the analytical calculation of the integrals in (2.9).

III. PERTURBATION THEORY

Assuming that h � 1, we represent the reduced magneti-
zation m in the series form

m =
∞∑

n=0

mn, (3.1)

where mn = mn(τ ) is the contribution to m in the nth
approximation (|mn| ∼ hn). Due to the condition |m| = 1,
there are strong connections between mn with different n.
Indeed, using the fact that m0 = ea , the condition |m| = 1 can
be written as

∞∑
n=1

m2
n + 2

∞∑
n=1

mn · ea + 2
∞∑

n=1

∞∑
k=n+1

mn · mk = 0. (3.2)

Since the set of vectors mn, which are introduced instead of
the single vector m, is infinite, one may require that condition
(3.2) holds in all orders of the perturbation theory, implying
that each sum of terms that have the same order equals zero.
In this case, for the terms of odd (n = 2p − 1; p is a natural
number) and even (n = 2p) orders one respectively obtains

m2p−1 · ea = −
p−1∑
l=1

ml · m2p−1−l (3.3)

and

m2p · ea = −1

2
m2

p −
p−1∑
l=1

ml · m2p−l . (3.4)

Thus, although mn is determined in the nth step of approxi-
mation, the scalar product mn · ea can be calculated using ml

obtained in the previous steps (i.e., at l < n). This property of
mn plays an important role in our analysis. Note also that for
p = 1 the sums in the right-hand sides of expressions (3.3)
and (3.4) equal zero, and so

m1 · ea = 0, m2 · ea = − 1
2 m2

1. (3.5)

The series representation for the dimensionless effective
magnetic field reads

heff =
∞∑

n=0

hn, (3.6)

where according to (2.7), (3.1), and (3.5), h0 = ea , h1 =
H/Ha = h cos (�τ )ex + ρh sin (�τ )ey , and hn = (mn · ea)ea

at n � 2. Substituting the series (3.1) and (3.6) into the reduced
LLG equation (2.6) and keeping the terms of the nth order in
h, we find the following first-order differential equation for
mn:

	ṁn = −
n∑

l=0

ml × hn−l + αhn

−α

n∑
l=0

n−l∑
k=0

(mk · hn−l−k)ml . (3.7)

Finally, by separating the terms with mn, this equation reduces
to

	ṁn + αmn + mn × ea = fn (3.8)

(n � 1). Its right-hand side, fn = fn(τ ), is given by

fn = −
n−1∑
l=0

ml × hn−l + αhn − α

n−1∑
l=0

n−l∑
k=0

(mk · hn−l−k)ml ,

(3.9)
and due to conditions (3.3) and (3.4), it does not depend on mn.
Thus, Eq. (3.8) is linear in mn, and fn is a given function of τ ,
which is determined by solving this equation with respect to ml

for l < n. In particular, in the first (n = 1) and second (n = 2)
approximations definition (3.9), together with conditions (3.5),
yields

f1 = h1 × ea + αh1 − α(h1 · ea)ea (3.10)

and

f2 = h1 × m1 − α(h1 · m1)ea − α(h1 · ea)m1 + (α/2)m2
1ea.

(3.11)

To write the vector formula (3.9) in the component form, it
is convenient to introduce a right-handed Cartesian coordinate
system x ′y ′z′ characterized by the unit vectors e1, e2, and ea .
The vector ea is defined by (2.2), and the others may be defined
in the following way (see, e.g., Ref. [22], p. 162):

e1 = 1

sin θa

(ez × ea) × ea, e2 = 1

sin θa

ez × ea. (3.12)
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Representing in this coordinate system mn and fn as

mn = mn1e1 + mn2e2 + mn3ea,

fn = fn1e1 + fn2e2 + fn3ea (3.13)

and taking into account that mn3, depending on parity of n,
is given by (3.3) or (3.4), from Eq. (3.8) for mn1 and mn2 we
obtain a system of equations

	ṁn1 + αmn1 + mn2 = fn1,

	ṁn2 + αmn2 − mn1 = fn2. (3.14)

In the steady state, the right-hand sides of these equations
are periodic functions of τ , which in the case of even n (n =
2p − 1) can be written in the matrix form(

fn1

fn2

)
=

p∑
i=1

(
qni gni

uni vni

)(
sin[(2i − 1)�τ ]
cos[(2i − 1)�τ ]

)
. (3.15)

While the matrix elements in (3.15) have to be determined in
the previous steps, the matrix elements in the representation(

mn1

mn2

)
=

p∑
i=1

(
ani bni

cni dni

)(
sin[(2i − 1)�τ ]
cos[(2i − 1)�τ ]

)
(3.16)

of the steady-state solution of Eq. (3.14) satisfy the matrix
equation⎛

⎜⎝
	�ni α 0 1
α −	�ni 1 0
0 −1 	�ni α

−1 0 α −	�ni

⎞
⎟⎠

⎛
⎜⎝

ani

bni

cni

dni

⎞
⎟⎠ =

⎛
⎜⎝

gni

qni

vni

uni

⎞
⎟⎠
(3.17)

with �ni = (2i − 1)�. In the case of odd n (n = 2p), the
formulas (3.15) and (3.16) should be replaced by(

fn1

fn2

)
=

(
gn0

vn0

)
+

p∑
i=1

(
qni gni

uni vni

)(
sin(2i�τ )
cos(2i�τ )

)
(3.18)

and(
mn1

mn2

)
=

(
bn0

dn0

)
+

p∑
i=1

(
ani bni

cni dni

)(
sin(2i�τ )
cos(2i�τ )

)
, (3.19)

respectively. According to Eq. (3.14), the parameters bn0 and
dn0, i.e., the time-independent parts of mn1 and mn2, are
determined by the equations

αbn0 + dn0 = gn0,

−bn0 + αdn0 = vn0 (3.20)

(the parameters gn0 and vn0 are assumed to be known), and
the matrix elements in (3.19) satisfy the same equation (3.17)
with �ni = 2i�.

The solution of Eq. (3.20) is given by

bn0 = 1

	
(αgn0 − vn0), dn0 = 1

	
(gn0 + αvn0), (3.21)

and the solution of the matrix equation (3.17) reads

ani = 1

	�ni

[ − �ni

(
1 − α2 − 	2�2

ni

)
gni + α

(
1 + 	�2

ni

)
qni

− 2α�nivni − (
1 − 	�2

ni

)
uni

]
,

bni = 1

	�ni

[
α
(
1 + 	�2

ni

)
gni + �ni

(
1 − α2 − 	2�2

ni

)
qni

− (
1 − 	�2

ni

)
vni + 2α�niuni

]
,

cni = 1

	�ni

[
2α�nigni + (

1 − 	�2
ni

)
qni

−�ni

(
1 − α2 − 	2�2

ni

)
vni + α

(
1 + 	�2

ni

)
uni

]
,

dni = 1

	�ni

[(
1 − 	�2

ni

)
gni − 2α�niqni

+α
(
1 + 	�2

ni

)
vni + �ni

(
1 − α2 − 	2�2

ni

)
uni

]
.

(3.22)

Here, �ni = (2i − 1)� if n = 2p − 1, �ni = 2i� if n = 2p,
i = 1,p, and

�ni = (
1 − 	�2

ni

)2 + 4α2�2
ni . (3.23)

Below, we consider in more detail the first- and second-
order approximations and discuss qualitatively the role of
higher-order terms in the perturbation expansion of the steady-
state magnetization.

A. First-order approximation

In this approximation, the contribution to the steady-state
solution of the LLG equation, m1, can easily be found from
the general expressions (3.22), in which n = i = p = 1 and
�ni = �. Indeed, rewriting the representation (3.15) in the
form

f11 = q11 sin(�τ ) + g11 cos(�τ ),

f12 = u11 sin(�τ ) + v11 cos(�τ ) (3.24)

and using the vector formula (3.10) together with definitions
(2.2) and (3.12), one straightforwardly gets

q11 = ρh(κa + αλaδa), g11 = −h(δa − αλaκa),

u11 = −ρh(λaδa − ακa), v11 = −h(λaκa + αδa), (3.25)

where, for the sake of brevity here and in the following, we
have introduced the notations

κa = cos ϕa, δa = sin ϕa,

λa = cos θa, χa = sin θa. (3.26)

Substituting the representation coefficients (3.25) into expres-
sions (3.22), we eventually find

a11 = h

�11
[2αρ�2κa + α�(1 + 	�2)λaκa

+�(1 − 	�2)δa + ρ(1 − 2�2 + 	�2)λaδa],

b11 = h

�11
[ρ�(1 − 	�2)κa + (1 − 2�2 + 	�2)λaκa

− 2α�2δa − αρ�(1 + 	�2)λaδa],

c11 = h

�11
[ρ(1 − 2�2 + 	�2)κa + �(1 − 	�2)λaκa

−α�(1 + 	�2)δa − 2αρ�2λaδa],
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d11 = h

�11
[−αρ�(1 + 	�2)κa − 2α�2λaκa

(1 − 2�2 + 	�2)δa − ρ�(1 − 	�2)λaδa]. (3.27)

Since, according to (3.23),

�11 = (1 − 	�2)2 + 4α2�2 (3.28)

and the condition α � 1 usually holds, the frequency depen-
dence of the first-order contribution to the steady-state reduced
magnetization,

m1 = (a11e1 + c11e2) sin(�τ )

+ (b11e1 + d11e2) cos(�τ ), (3.29)

exhibits, in general, a resonant behavior near the ferromagnetic
resonance frequency (� = 1). Note, however, that in some
particular cases, e.g., if θa = ϕa = 0 and ρ = −1 or if θa =
π/2, ϕ0 = 0, and ρ = 0, the resonance does not exist. In
the first case, the physical reason is that the direction of
the magnetic field rotation is opposite to the direction of the
natural precession of the nanoparticle magnetization [30]. In
contrast, in the second case, the reason is that the magnetic
field, whose direction is parallel to the anisotropy axis of the
nanoparticles, does not induce the magnetization dynamics in
this approximation. It is important to emphasize that, since the
characteristics of the considered system are averaged over all
the directions of the unit vector ea , which is assumed to be
uniformly distributed over the sphere, there is no contribution
from nanoparticles with fixed θa and ϕa .

B. Second-order approximation

The representation (3.18) corresponds to the second-order
approximation if n = 2 and i = p = 1, yielding

f21 = g20 + q21 sin(2�τ ) + g21 cos(2�τ ),

f22 = v20 + u21 sin(2�τ ) + v21 cos(2�τ ). (3.30)

From this, using (3.11) and (3.29), we find

g20 = −h

2
[(d11 + αb11)κa + ρ(c11 + αa11)δa]χa,

v20 = h

2
[(b11 − αd11)κa + ρ(a11 − αc11)δa]χa (3.31)

and

q21 = −h

2
[(c11 + αa11)κa + ρ(d11 + αb11)δa]χa,

g21 = −h

2
[(d11 + αb11)κa − ρ(c11 + αa11)δa]χa,

(3.32)

u21 = h

2
[(a11 − αc11)κa + ρ(b11 − αd11)δa]χa,

v21 = h

2
[(b11 − αd11)κa − ρ(a11 − αc11)δa]χa.

Then, rewriting the representation (3.19) in the form

m21 = b20 + a21 sin(2�τ ) + b21 cos(2�τ ),

m22 = d20 + c21 sin(2�τ ) + d21 cos(2�τ ) (3.33)

and using (3.31), from (3.21) one immediately obtains

b20 = −h

2
(b11κa + ρa11δa)χa,

d20 = −h

2
(d11κa + ρc11δa)χa. (3.34)

Finally, substituting the coefficients (3.32) into the general
expressions (3.22), we get

a21 = hχa

2�21
[−(1 − 8�2 + 4	�2)A − 2α�(1 + 4	�2)B

− 8α�2C + 2�(1 − 4	�2)D],

b21 = hχa

2�21
[2α�(1 + 4	�2)A − (1 − 8�2 + 4	�2)B

− 2�(1 − 4	�2)C − 8α�2D],
(3.35)

c21 = hχa

2�21
[8α�2A − 2�(1 − 4	�2)B

− (1 − 8�2 + 4	�2)C − 2α�(1 + 4	�2)D],

d21 = hχa

2�21
[2�(1 − 4	�2)A + 8α�2B

+ 2α�(1 + 4	�2)C − (1 − 8�2 + 4	�2)D],

where

A = a11κa + ρb11δa, B = b11κa − ρa11δa,

C = c11κa + ρd11δa, D = d11κa − ρc11δa, (3.36)

and, according to definition (3.23),

�21 = (1 − 4	�2)2 + 16α2�2. (3.37)

Thus, the second-order contribution to the steady-state
reduced magnetization is given by

m2 = b20e1 + d20e2 + (a21e1 + c21e2) sin(2�τ )

+ (b21e1 + d21e2) cos(2�τ ) − 1
2 m2

1ea. (3.38)

This contribution, in contrast to the first-order one, has a
resonant dependence on the reduced frequency � not only
in the vicinity of the first-order resonance (� = 1) but, as
follows from (3.35) and (3.37), also in the vicinity of the
second-order resonance (� = 1/2). It should be noted that for
nanoparticles, whose anisotropy axes are perpendicular to the
polarization plane (when χa = 0), this effect does not exist.

IV. AVERAGE MAGNETIZATION

Now, using the above results of the perturbation theory,
we determine the average value of the reduced nanoparticle
magnetization, 〈m〉, in the quadratic approximation. Since in
this case m = ea + m1 + m2 with m1 and m2 given by (3.29)
and (3.38), respectively, the time averaging of m yields

m = b20e1 + d20e2 + (
1 − 1

2 m2
1

)
ea. (4.1)

From this and from definitions (3.12) and (2.2) of the unit
vectors e1, e2, and ea , the Cartesian components of m can be
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written in the form

mx = b20λaκa − d20δa + (
1 − 1

2 m2
1

)
χaκa, (4.2a)

my = b20λaδa + d20κa + (
1 − 1

2 m2
1

)
χaδa, (4.2b)

mz = −b20χa + (
1 − 1

2 m2
1

)
λa. (4.2c)

Then, we average these components over the angles θa and
ϕa distributed with the probability density (2.3). Taking into
account that 〈F (θa,ϕa)〉 = 0 if F (π − θa,ϕa) = −F (θa,ϕa)
or F (θa,π + ϕa) = −F (θa,ϕa), one can make sure that all
averages in the right-hand sides of (4.2a) and (4.2b) are equal
to zero, and so

〈mx〉 = 〈my〉 = 0. (4.3)

In contrast, with the exception of 〈λa〉 = 0, the other
averages in the right-hand side of (4.2c), i.e., 〈b20χa〉 and
〈m2

1λa〉, are not equal to zero. Indeed, using the previously
derived results (3.34) and (3.27) together with the conditions
〈χ2

a κ2
a 〉 = 〈χ2

a δ2
a〉 = 1/3, which can be verified directly from

definition (2.9), we obtain

〈b20χa〉 = −ρh2�

3�11
(1 − 	�2). (4.4)

Similarly, taking into account that

m2
1 = 1

2

(
a2

11 + b2
11 + c2

11 + d2
11

)
(4.5)

and 〈λ2
aκ

2
a 〉 = 〈λ2

aδ
2
a〉 = 1/6, one can show that

〈
m2

1λa

〉 = 2ρh2�

3�2
11

[(1 − 	�2)(1 − 2�2 + 	�2)

+ 2α2�2(1 + 	�2)]. (4.6)

Finally, since 〈mz〉 = −〈b20χa〉 − 〈m2
1λa〉/2, from (4.4) and

(4.6) it follows that 〈mz〉 = −ρ	h2�3/(3�11) or, with the
notation (3.28),

〈mz〉 = −1

3
ρ	h2 �3

(1 − 	�2)2 + 4α2�2
. (4.7)

Thus, the elliptically polarized magnetic field (2.1), which
has no constant components, magnetizes the considered
systems of ferromagnetic nanoparticles. Since these systems
are characterized by the uniform distribution of easy axis
directions, there is no net magnetization without this field.
In its presence, the direction of induced magnetization is
perpendicular to the polarization plane and depends on the
direction of the magnetic field rotation (i.e., on the sign
of ρ). The phenomenon of induced magnetization has a
purely dynamical origin: according to the LLG equation
(2.6), the forced dynamics of the reduced magnetization m
in nanoparticles characterized by the vectors ea and −ea is
quite different. It is worthwhile to recall that the induced
magnetization (4.7) is the second-order effect. Its main feature
is that 〈mz〉 in the vicinity of the point � = 1 depends on � in
a resonant manner [max |〈mz〉| � |ρ|h2/(12α2) as α � 1]. It
should also be noted that the linearly polarized magnetic field
(when ρ = 0) does not magnetize the considered systems of
ferromagnetic nanoparticles.
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FIG. 1. Frequency dependence of the z component of the reduced
magnetization. The solid lines represent the theoretical result (4.7),
and the numerical results for 〈mz〉num are shown by the symbols (their
size exceeds the error bars). The theoretical and numerical results
are presented for the circularly (ρ = 1), elliptically (ρ = 0.5), and
linearly (ρ = 0) polarized magnetic field of amplitude h = 0.01.

In order to verify the theoretical results, we numerically
determined the steady-state solution m(l) (l = 1,N ) of Eq. (2.6)
(we take α = 0.05 in all our numerical calculations) for
N = 2 × 103 nanoparticles, whose easy axis directions are
distributed according to the probability density (2.3). Then,
calculating the average reduced magnetization as 〈m〉num =
(1/NT )

∑N
l=1

∫ T
0 m(l)dτ , we made sure that the Cartesian

components of 〈m〉num are in very good agreement with those
predicted in (4.3) and (4.7), if the reduced magnetic field
amplitude h is small enough. For illustration, in Fig. 1 we
show the dependence of 〈mz〉 and 〈mz〉num on the reduced
frequency for different polarizations of the external magnetic
field of relatively small amplitude.

The difference between 〈mz〉 and 〈mz〉num as functions
of � appears and grows with increasing h. There are a
few reasons for this. One of them is that the magnetization
of some nanoparticles, depending on the direction of their
easy axes, can transit to a new steady state with increasing
�, if the reduced amplitude h is not too small. In such a
case, the transition occurs at � = �tr, where �tr(<1) is the
transition frequency, and is accompanied by an abrupt change
in the steady-state trajectory of the reduced magnetization (see
Fig. 2). While the steady-state period T is the same just below
and just above the transition frequency, the switching of the
steady state leads to a strong change of the z component of
the reduced magnetization at � = �tr (because |m(l)| = 1).
As shown in Fig. 3, due to the existence of the transition
frequency �tr and its slow dependence on easy axis directions,
the frequency dependence of 〈mz〉num qualitatively differs from
the theoretical result (4.7). With a slight increase of h, the peak
of |〈mz〉num| is shifted to lower frequencies and its maximum
value decreases, in contrast to the � and h dependence of
|〈mz〉|. At the same time, the condition 〈mz〉|−ρ = −〈mz〉|ρ ,
which follows from (4.7), holds for 〈mz〉num as well. We
note also that a little difference between 〈mz〉 and 〈mz〉num

at h = 0.01 (see Fig. 1, � � 0.95) arises from the fact that
in this case there is a small fraction of nanoparticles in which
the transition to a new steady state still occurs. This fraction
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FIG. 2. Projection of the steady-state trajectories of the reduced
magnetization on the x ′y ′ plane just below (1) and just above (2) the
transition frequency. The trajectories are obtained from the numerical
solution of Eq. (2.6) for the nanoparticle, whose easy axis direction
is characterized by the angles θa = π/3 and ϕa = 0, and the reduced
magnetic field of amplitude h = 0.05 has the circular polarization
(ρ = 1). In this case, the nanoparticle magnetization rotates in the
counterclockwise direction (indicated by the arrows), the trajectories
are almost circular, and the transition frequency is approximately
given by �tr � 0.84.

decreases with decreasing h and, e.g., at h = 0.005 the above
difference practically vanishes.

The second reason is that the role of the higher-order terms
mn (n � 3) in the expansion of the reduced magnetization m,
which are neglected in 〈mz〉, grows with increasing h. Since,
according to (3.23), these terms depend on � in a resonant
way not only near the point � = 1 [for example, the resonant
behavior of mn with n = 2p occurs in the vicinity of the points
� = 1/(2i), i = 1,p], the frequency dependence of m in the
nth order approximation can strongly differ from that obtained
in the second-order approximation. Although the average of
m may eliminate some of the resonances (in particular, 〈mz〉,
in contrast to mz, has no resonance at � = 1/2 in the second-
order approximation), we can expect that, in general, 〈mz〉 as
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FIG. 3. Frequency dependence of the z component of the reduced
magnetization for h = 0.05 and ρ = 1. The theoretical (〈mz〉) and
numerical (〈mz〉num) results are shown by the solid and symbol lines,
respectively. The difference between them is caused by the transitions
in the magnetization dynamics similar to that shown in Fig. 2 (these
transitions in nanoparticles with different easy axis directions occur
at different frequencies).

a function of � behaves in a qualitatively different way in the
higher-order and second-order approximations.

To demonstrate this explicitly, let us first consider the
third-order approximation in h, when m = ea + ∑3

n=1 mn.
Using (3.3) and (3.16), we find m3 · ea = −m1 · m2 = 0 and
m3 · e1 = m3 · e2 = 0, i.e., m3 = 0. This means that 〈m〉 =
〈m2〉, and thus formula (4.7) holds also in the third-order
approximation. In contrast, in the fourth-order approximation
in h, when m = ea + ∑4

n=1 mn, we have 〈m〉 = 〈m2〉 + 〈m4〉,
where according to (3.4) and (3.19),

〈m4〉 = − 1
2

〈
m2

2 ea

〉 − 〈(m1 · m3)ea〉. (4.8)

The resonance at � = 1/3, which is associated with the
frequency dependence of m3, is eliminated by the time
averaging, and the last term in (4.8), if it is nonzero, resonantly
depends on � only in the vicinity of the point � = 1.
Therefore, since this term is of the order of h4, it does not
change qualitatively the second-order result (4.7). As to the
first term in the right-hand side of (4.8), it, according to
(3.34)–(3.38), exhibits a resonant behavior in the vicinity of
two reduced frequencies � = 1/2 and � = 1. This term is
also of the order of h4, but in general it can be neglected
everywhere except in the vicinity of the point � = 1/2. In this
frequency domain, one may expect that the z component of the
first term, −〈m2

2λa〉/2, exceeds 〈mz〉, if the reduced magnetic
field amplitude h is not too small. It is clear from the previous
results that, depending on h, the z component of 〈m〉 in the 2pth
order approximation can exhibit a resonant behavior in the
vicinity of the subharmonic frequencies � = 1/i with i = 1,p

(the resonant frequency � = 1/i corresponds to the ith order
resonance). The frequency dependence of 〈mz〉num, illustrating
the role of the second-order resonance, is shown in Fig. 4. For
the same reason as in Fig. 3, the local minimum of 〈mz〉num is
shifted (with respect to the analytical result � = 1/2) to lower
frequencies.

With further increasing h, the magnetization dynamics
becomes more complex. In particular, depending on h and
easy axis direction, the transition of m to a new steady
state may occur in such a way that the sign of the scalar
product m · ea is changed. Moreover, there can be a few
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FIG. 4. Dependence of 〈mz〉num on the reduced frequency � for
h = 0.14 and ρ = 1. Inset: the same dependence in the vicinity of
the second-order resonance.
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FIG. 5. Frequency dependence of 〈mz〉num for h = 0.25 and
ρ = 1. The nonmonotonic behavior of 〈mz〉num, which occurs in
the interval (0.4,0.7), results from magnetization switching in some
nanoparticles; the width of this interval grows with increasing h.

changes of sign as the magnetic field frequency grows. In
other words, increasing � can lead to repeated switching
of the nanoparticle magnetization. Because each switching
is accompanied by a strong change of mz (if θa is not too
close to π/2), these switchings can appreciably affect the
frequency dependence of 〈mz〉num (see Fig. 5). For illustration,
in Fig. 6 we show examples of steady-state trajectories of
m just before and after the switching transition. Note also
that, if h is large enough, there can exist a frequency interval,
where the magnetization dynamics is chaotic, i.e., the time
evolution of m is extremely sensitive to initial conditions.
In our numerical calculations, the time-averaging interval
T for nanoparticles with chaotic magnetization dynamics is
chosen to be 2 × 103/� and 4 × 103/� for � < 1 and � � 1,

(b)

m

m

m

(a)
m

x
y

z

x
y

z

aea e

FIG. 6. Steady-state trajectories of the reduced magnetization
m for the nanoparticle with θa = π/3 and ϕa = 0 driven by the
circularly polarized magnetic field (ρ = 1) of amplitude h = 0.14
(a) and h = 0.25 (b). The upper (lower) trajectories correspond to
the field frequencies just before (after) the switching transition. At
h = 0.14 the upper trajectory corresponds to � = 0.6, the lower one
to � = 0.601, �tr ∈ (0.6,0.601), and the magnetization precession
in both states occurs with the field frequency �. In contrast, at
h = 0.25 the upper trajectory corresponds to � = 0.485, the lower
one to � = 0.486, �tr ∈ (0.485,0.486), and, while the magnetization
precession in the lower state occurs with the field frequency, the
frequency of precession in the upper state is two times less than �.

respectively. It turned out that frequency-induced transitions
to and from chaotic regime do not significantly change the
frequency dependence of 〈mz〉num.

V. POWER LOSS

According to definition (2.10) and series representation
(3.1), the reduced power loss at h � 1 and under the condition
that the reduced magnetization m does not transit to another
steady state with increasing h and � can be expressed in the
general form

q = α

〈( ∞∑
n=1

ṁn

)2〉
. (5.1)

For simplicity and illustrative purposes, we restrict ourselves
to the second order in the expansion of q in powers of h. In
this approximation the above expression reads

q = α
〈
ṁ2

1

〉
. (5.2)

Since, according to (3.29), ṁ2
1 = �2m2

1 and m2
1 is given

by (4.5), the reduced power loss can be written as q =
α�2(〈a2

11〉 + 〈b2
11〉 + 〈c2

11〉 + 〈d2
11〉). Calculating these aver-

ages, which can be done by using expressions (3.27) together
with the conditions 〈κ2

a 〉 = 〈δ2
a〉 = 1/2 and 〈λ2

aκ
2
a 〉 = 〈λ2

aδ
2
a〉 =

1/6, we obtain

q = 1

3
α(1 + ρ2)h2 �2(1 + 	�2)

(1 − 	�2)2 + 4α2�2
. (5.3)

Thus, in the second-order approximation, the reduced
power loss q as a function of the reduced frequency � exhibits
a resonant behavior near the point � = 1 and satisfies the
conditions max q � (1 + ρ2)h2/(6α) at α � 1 and q � α(1 +
ρ2)h2/3 at � � 1 and α � 1. This is not surprising because
the second-order expansion of the power loss corresponds to
the first-order expansion of the magnetization. To check for-
mula (5.3), we numerically calculated the reduced power loss
as qnum = (1/NT )

∑N
l=1

∫ T
0 q(l)dτ , where q(l) = α(ṁ(l))2. If

the reduced magnetic field amplitude h is small enough, the
numerical results are in excellent agreement with the analytical
ones, as seen from Fig. 7. For the same reasons as for 〈mz〉,
the increase of h leads to the difference between q and qnum

(see Fig. 8 for an illustration).
If the magnetic field amplitude is not too small, the

nonlinear resonances can modify the frequency dependence
of the power loss. In particular, assuming that ṁ = ∑3

n=1 ṁn

and taking into account that according to (3.29) and (3.38)
ṁ1 · ṁ2 = 0, one gets (up to terms of order h4)

q = α
〈
ṁ2

1 + ṁ2
2 + 2ṁ1 · ṁ3

〉
. (5.4)

As is clear from the above discussion, the terms in ṁ1 · ṁ3

that show a resonant behavior in the vicinity of the reduced
frequency � = 1/3 vanish upon time averaging. Therefore,
the only term α〈ṁ2

2〉, which is of the order of h4, may
qualitatively change the frequency dependence of the reduced
power loss (5.3), which is of the order of h2. According to
(3.35)–(3.38), this occurs near the second-order resonance,
i.e., in a small vicinity of the reduced frequency � = 1/2. A
similar analysis predicts and numerical results confirm (see
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FIG. 7. Frequency dependence of the reduced power loss for
the circularly (ρ = 1), elliptically (ρ = 0.5), and linearly (ρ = 0)
polarized magnetic field of amplitude h = 0.01. The numerical results
(qnum) obtained by solving Eq. (2.6) are represented by symbols, and
the solid lines represent the theoretical result (5.3).

Fig. 9) that the higher-order resonances can also exist. Note
that these resonances are more pronounced for qnum than for
〈mz〉num.

VI. DISCUSSION AND CONCLUSIONS

We have determined the average magnetization and power
loss for the system of ferromagnetic nanoparticles that are
driven by an elliptically polarized magnetic field and whose
anisotropy axes are uniformly oriented. One of the most
important observations is that the driving field magnetizes this
system in the direction perpendicular to the polarization plane.
This is a remarkable result because the elliptically polarized
magnetic field has no component in that direction. From a
physical point of view, the appearance of the average mag-
netization is a consequence of the fact that the magnetization
precession in nanoparticles occurs in the counterclockwise
direction. Indeed, due to this property, the magnetization
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FIG. 8. Frequency dependence of the reduced power loss for
h = 0.05 and ρ = 1. The theoretical (q) and numerical (qnum)
results are shown by the solid and symbol lines, respectively. The
difference between q and qnum arises from the same transitions that
are responsible for the difference between 〈mz〉 and 〈mz〉num (see
Fig. 3).
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FIG. 9. Dependence of qnum on the reduced frequency � for h =
0.3 and ρ = 1. Inset: the same dependence in the vicinity of the fourth-
order (� = 1/4), third-order (� = 1/3), and second-order (� = 1/2)
resonances. The shift of the peak positions of qnum to the left has the
same origin as the shift of the minima of 〈mz〉num.

dynamics in each pair of nanoparticles, whose equilibrium
magnetization vectors are symmetric with respect to reflection
in the polarization plane, is different. This difference is a
purely dynamical, polarization-dependent effect, which after
averaging over all nanoparticles leads to a nonzero average
magnetization of the reference system.

In order to find the analytical expressions for the average
magnetization and power loss in the case of small-amplitude
limit of the driving magnetic field, we have developed a
general perturbation theory for the LLG equation. Within this
framework, we have determined the steady-state solution of
the LLG equation and calculated the average magnetization
and power loss with the second-order accuracy. An important
feature of these quantities is that they depend on the driving
field frequency in a resonant way. It should be emphasized
that, according to the definition, the second-order expression
for the power loss follows from the first-order solution of
the LLG equation, and so exhibits a resonant behavior in
the vicinity of the first-order resonance. In contrast, the
second-order expression for the average magnetization is
determined by the second-order solution of the LLG equation.
Although this solution accounts for the effect of both the first-
and second-order resonances, the impact of the second-order
resonance is eliminated by the averaging. We have confirmed
these theoretical predictions by the numerical results obtained
from numerical solution of the LLG equation.

Our theoretical analysis has shown, and numerical results
have verified, that subharmonic resonances arising from the
nonlinearity of the LLG equation also influence the frequency
dependence of the average magnetization and power loss.
However, since subharmonic resonances appear for rather
large amplitudes of the elliptically polarized magnetic field,
the nonlinear features of the magnetization dynamics strongly
influence the frequency dependence of the reference quantities
as well. We have found that among these features the
transitions between different steady-state solutions of the
LLG equation, which occur as the driving field frequency
changes, play the most important role. If these transitions
occur without the magnetization switching, the extremes of
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the average magnetization and power loss are shifted to lower
frequencies. In contrast, if the transitions in some fraction of
nanoparticles are accompanied by the magnetization switching
(this is possible if the driving field amplitude is large enough),
then the frequency dependence of these quantities, and above
all the average magnetization, changes drastically. Finally,
we have established that the transitions between regular and
chaotic regimes of the magnetization dynamics do not affect
these quantities in a significant way.

Let us also discuss the nanoparticle systems that can be
used to verify the obtained results. According to the model
assumptions, the experimental systems must be composed of
monodisperse single-domain nanoparticles that are randomly
oriented and do not interact with each other. While the systems
with monodisperse single-domain nanoparticles are common
and easy to synthesize [38], the systems characterized by the

uniform distribution of easy axis directions and negligible
dipolar interaction are not so widespread. To the best of our
knowledge, one of the most suitable systems, whose magnetic
dynamics can be described by the proposed model, is the
assembly of iron-platinum nanoparticles produced at relatively
low annealing temperature [39]. Another such system is
the two-dimensional assembly of iron oxide nanoparticles
obtained by the click reaction [40]. If the interparticle distance
is large enough, the nanoparticles in this assembly satisfy all
of the above conditions.
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Improved efficiency of heat generation in nonlinear dynamics
of magnetic nanoparticles, Phys. Rev. E 93, 012607 (2016).

[29] T. V. Lyutyy, S. I. Denisov, A. Yu. Peletskyi, and C. Binns, En-
ergy dissipation in single-domain ferromagnetic nanoparticles:
Dynamical approach, Phys. Rev. B 91, 054425 (2015).

[30] S. I. Denisov, T. V. Lyutyy, and P. Hänggi, Magnetization of
Nanoparticle Systems in a Rotating Magnetic Field, Phys. Rev.
Lett. 97, 227202 (2006).

[31] S. I. Denisov, A. Yu. Polyakov, and T. V. Lyutyy, Resonant sup-
pression of thermal stability of the nanoparticle magnetization
by a rotating magnetic field, Phys. Rev. B 84, 174410 (2011).

[32] E. C. Stoner and E. P. Wohlfarth, A mechanism of hysteresis in
heterogeneous alloys, Philos. Trans. R. Soc. London A 240, 599
(1948).
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