
JOURNAL OF NANO- AND ELECTRONIC PHYSICS ЖУРНАЛ НАНО- ТА ЕЛЕКТРОННОЇ ФІЗИКИ 

Vol. 12 No 2, 02034(4pp) (2020) Том 12 № 2, 02034(4cc) (2020) 

 

 

2077-6772/2020/12(2)02034(4) 02034-1  2020 Sumy State University 

Shock Wave Treated PVA Films as Alternative Bio Degradable Polymer  

for Packaging Industry 
 

Thirumalesh1,3,*, S.P. Raju4, H.M. Sosmashekharappa2,† 

 
1 Department of Studies in Physics, Mangalore University, Mangalagangotri – 574 199, Karnataka, India 

2 Center for Application of Radioisotopes and Radiation Technology (CARRT), Mangalore University,  

Mangalagangotri – 574 199, Karnataka, India 
3 Departement of Physics, R L Jalappa Institute of Technology, Doddaballapur – 561203, Karnataka, India 

4Departement of Physics, Malnad College of Engineering, Hassan – 573202, Karnataka, India 

 
(Received 15 February 2020; revised manuscript received 13 April 2020; published online 25 April 2020) 

 
Poly Vinyl Alcohol is being an environmental friendly and having very good mechanical properties, the 

hydrophilic property of it makes it un-usable for packaging industry as an alternative to environmental 

hazardous petro chemical based polymers. To increase its water resistant property an indigenous shock 

wave treatment is tested and it is found that the hydrophilic property reduces significantly. The Poly Vinyl 

Alcohol films of around 0.25 mm thickness is bombarded with 0, 50, 100 and 150 shock wave impulses, 

with time gap of around 15 seconds of having Mach number around 1.7 to 1.8. The shock waves are pro-

duced with the help of a shock tube which can produce shockwaves with Mach number upto 2. The water 

resistant property is studied by film dissolve time method and by contact angle measurement. The morpho-

logical changes due to shock loading is studied by UV-VIS, EDAX, FTIR methods and the SEM images con-

firm the structural changes. The reduction in hydrophilic property promises the future of PVA films as bi-

odegradable packaging material. 
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1. INTRODUCTION 
 

Shock waves [1] and blast waves are a sort of wave 

that carries the disruption created by sudden bursting 

in any medium. The immediate effect of shock waves 

results in an abrupt increase in pressure, enthalpy and 

temperature on the surface of the medium on which the 

wave front of the shockwave impacts [2]. Shock tubes 

or shock tunnels are used in production of shockwaves 

in the laboratory in a controlled way [3-6]. In general, a 

shock tube will consist of two parts. Namely, a driver 

section(pre-shock side), a driven section(post-shock 

side), and a thin diaphragm separates the two regions. 

The pressure in the driver section is increased with the 

help of a pump by compressing the driving medium. 

Therefore, the diaphragm breaks down and produces a 

shockwave in the downstream of driven section. The 

velocity of the shockwave generated will be more than 

the velocity of sound in that medium. This supersonic 

velocity is measured in a unit called Mach number. 

Mach number is the unit of speed defined as the ratio 

of object velocity in a medium to the ambient sound 

velocity. So, Mach-1 corresponds to, the sound velocity 

in a medium and more reflects multiples of the sound 

velocity. Appropriate sensors are mounted on the shock 

tube to assess the shockwave movement and to meas-

ure strength of rupture pressure which creates the 

wave. The present work focuses primarily on the 

treatment of Poly vinyl alcohol (PVA) films by shock-

wave in pursuit of increase in the hydrophobic nature.  

Poly vinyl alcohol (PVA) is a bio-degradable and wa-

ter-soluble polymer, in which the hydroxyl(OH) groups 

hooked up to carbon atoms of methane groups on car-

bon chain backbone. Such hydroxyl groups forms the 

origin of bonding between hydrogen atoms and thus 

responsible for polymer formation[7]. PVA’s impressive 

chemical and physical properties are water-soluble, 

non-toxic, environmental friendly, good mechanical 

strength and strong dielectric strength etc. Also, these 

properties can be further enhanced or tuned by adding 

compatible dopants [8-11] and we can find good number 

of attempts in modifying PVA properties with irradia-

tion methods [12-15]. Consequently, PVA has numer-

ous applications in various fields. In pursuit of changes 

in chemical and physical properties, the analysis dis-

cussed here is another approach used for processing 

PVA. The electrical property changes of PVA films due 

to shockwave impacts is studied and published else-

where [16]. 

 

2. EXPERIMENTAL TECHNIQUES 
 

2.1 PVA Films Preparation 
 

PVA in semi crystalline powder form of 99.9% pure 

was obtained from SD Fine Chemicals Ltd., Mumbai, 

India. 4wt% PVA solution is prepared in 60 °C hot 

distilled water with continuous stirring for about 5-6 

hours. The prepared PVA solution is distributed to 

2inch diameter petri dishes and is dried under hot air 

oven at 50 °C for about 24-30 Hrs to get thin films of 

PVA samples. 

 

2.2 Shock Tube Setup 
 

The shock tube used for this study is designed and 
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developed in-house. This is a low pressure manually 

operated shock-tube type, and has the ability to generate 

shockwaves of Mach number upto 2. The actual photo-

graph of the shock tube used is given in Fig. 1. The 

method of construction of the shock tube, its working, 

calibration and results obtained are discussed in detail 

and submitted for publication in a reputed journal [6]. 

The shock tube specifications are as follows. The 

driving section of the tube is around 400 mm long and 

the driven section is 500 mm long. The inner and outer 

diameter of the tube is 20mm and 38 mm respectively. 

The material of the tube is 316 grade stainless steel. 

The driving and driven sections of the tube are sepa-

rated by a diaphragm which is placed in an arrange-

ment having a handle to join and separate the two 

sections. The diaphragm can be replaced every time in 

this arrangement easily.  
 

 
 

Fig. 1 – Actual photograph of the shock tube setup used in 

this study 

 

2.3 Shock Wave Treatment 
 

The petri dishes containing the PVA films are 

placed inside the sample holder attached to the open 

end of the driven section of the shock tube with a gap of 

around 10mm between the sample and the shock tube. 

A leg pump used to inflate the tires of vehicles is used 

to create a pressure in the driving section. A paper 

diaphragm of thickness 90GSM can produce shock-

waves around 1.7 to 1.8 Mach numbers. The Mach 

number of the shock wave generated can be found by 

measuring the time delay between the signals plotted 

on the computer screen by a ‘shock tube data analyzer’ 

software specifically developed for this device and by 

knowing the distance between the sensors. This process 

is repeated to generate shock waves continuously by 

replacing the diaphragms. The time interval between 

the successive shockwave impacts is maintained as not 

more than 15 seconds. The PVA samples were bombard-

ed with 0, 25, 50, 100 and 150 shock waves impacts. 

 

2.4 Characterization 
 

The PVA samples which are exposed to shock waves 

are characterized for physical and chemical property 

changes. The Fourier Transform Infrared Spectropho-

tometer (FTIR) method was used to know the chemical 

composition changes over a wave number range of 

4000-1500 cm  1. For optical characterization of the 

PVA samples, the Ultraviolet-Visible (UV-Viz) absorp-

tion spectrometer analysis was carried out in the wave-

length range of 200-500 nm. To know the surface mor-

phology of the samples, FESEM - Field Emission Scan-

ning Electron Microscopic method was used. The EDAX 

studies were conducted to identify the PVA sam-

ples elemental composition. The contact angle meas-

urement was done to study the hydrophilic nature of 

the samples and an indigenous test was carried out to 

quantify the water solubility nature for the use of PVA 

as a packaging material. 

 

3. RESULTS AND DISCUSSION 
 

3.1 UV-Vis Absorption Spectrum Studies 
 

From the UV-Vis spectral analysis (Fig. 2), it is ob-

served that, the wavelength corresponding to the max-

imum absorption shifting towards longer wavelength 

side as the number of shock waves impact increases 

from zero to 150 numbers. This could be observed in 

the careful study of the readings corresponding to the 

spectrum in the marked region. This clearly exhibit as 

the higher delocalization in electron confinements of 

the PVA samples in response to shockwaves. This ten-

dency is checked by examining the wavelengths refer-

ring to the maximum absorbance value for different 

curves. This reorganization of PVA molecules increases 

the delocalization of polymer bonds due to the shock 

waves. The improvement in delocalization decreases 

the energy difference between the occupied uppermost 

molecular orbital and the unoccupied lowermost anti-

bonding orbital [17]. 
 

 
 

Fig. 2 – UV – Vis spectra of shock treated and untreated PVA 

samples 
 

Therefore, the energy required to jump between 

these levels becomes less and thus the wavelength of 

absorption becomes longer. Therefore, the absorption 

shift to longer wavelengths as the delocalisation in the 

PVA molecules rises.  

 

3.2 FTIR Studies  
 

Changes in the main peaks of FTIR spectra (Fig. 3), 

suggest the effective changes in PVA functional groups 

by shockwaves.  In the FTIR spectra it is observed that, 

the peak corresponding to the O-H group situated at 

3300 cm-1 is reduced after shockwave treatment when 

compared with the pure samples. The decrease in Hy-

drogen bonding signifies that, the molecules of PVA 

becoming less polar [17]. This implies that, the solubili-

ty of these molecules becomes less in a polar solvent 

like water. 
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Fig. 3  FTIR spectra of shock wave treated PVA films 
 

This directly supports the claim of less water solu-

bility of PVA films after treating with shockwaves. 

Decrease in the width of important Corban related 

peaks present at 2900 and 1700 for C-H asymmetric 

stretching and CO stretching respectively on compari-

son with treated and untreated samples clearly con-

firms the carbonization of the samples due to shock-

waves effect. 

 

3.3 FESEM and EDAX Studies 
 

SEM images (Fig. 4) for treated samples (B & D) 

comparing with untreated sample (A) clearly show that 

the surface of them is sensitive towards shock waves.  

EDAX spectra given in the same Figure corresponding 

to A, B & C clearly shows the modification in the sam-

ples surface chemistry with respect to the variation in 

the elemental composition. 

Shockwaves interaction with PVA breaks the long 

polymers molecules and contributes towards the cross-

link between them. Such break-up and cross-linking of 

molecules results in an improvement in carbon content 

per unit volume. The increase in the carbon concentra-

tion peak for the shockwave treated samples in the 

EDAX spectra is a strong evidence of this observation. 

 

 
 

Fig. 4  SEM images and EDAX spectra of untreated and shock-wave treated samples 

 

3.4 Water Solubility Test 
 

An indigenous technique was used to test the ob-

servation received with the FTIR and UV-Vis spectral 

studies about the hydrophobic or less water solubility 

of PVA after shock wave treatment. The test was per-

formed for PVA samples of 0.4 mm thick films of same 

number of shock wave treatments.  The sample films 

were folded to conical shape and placed in a glass fun-

nel which is kept on a conical flask (Fig. 5).  A stop 

clock was turned ON when 1ml of water is poured into 

it. The time taken for the water to drop into the conical 

flask after dissolving through the PVA films was rec-

orded.  As to support the expectation, the time taken by 

the water drop to dissolve through the shock wave 

treated sample was more compared to untreated PVA 

sample. The test was repeated with the same number 

of shocks for two more samples and the similar results  

 
 

Fig. 5 – Water solubility test for PVA films 
 

were found. The average water dissolve time recorded 

is given in Table 1. Thus, the tabulated values support-

ed the claim that, the PVA samples were become less 

water soluble after shock-waves treatment. 
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Table 1 – Water solubility test values for various shock treat-

ed PVA films 
 

Number of 

Shock treatment 

Time taken by 1 ml water to 

dissolve through PVA films in 

seconds  

0 (pristine PVA) 102 

50 shocks 537 

100 shocks 483 

150 shocks 499 

 

3.5 Contact Angle Measurement 
 

Contact angle of water for pristine PVA and shock 

treated PVA samples were measured in order to inves-

tigate the hydrophilic or hydrophobic nature of the 

surfaces of the materials. The material wettability is 

known to be high for low water contact angles ( 90°) 

and low wettability for high contact angles ( 90°) 

[11, 18]. Low water contact angles, in other words, may 

mean higher hydrophilic nature and high contact an-

gles may mean higher hydrophobic nature of material 

surfaces.  

In good agreement with the previous results, the 

neat PVA had a very low water contact angle of 24.8° 

[11]. Whereas, there is a remarkable increased water 

contact angle for the shock treated PVA films. The 

hydrophilic level of shock treated films was slightly 

modified as the number of shock wave impacts increas-

es, as shown in Table 2. The contact angle measure-

ment photographs for untreated samples and shock 

wave treated samples are given in Fig. 6. 
 

Table 2 – Water contact angle values for various shock treat-

ed PVA films 
 

Number of Shock 

treatment 
Water contact angle 

0 (pristine PVA) 24.8 

50 shocks 110.5 

100 shocks 95.4 

150 shocks 100.7 
 

  

  
 

Fig. 6 – Contact angle measurement photographs of the un-

treated and shock treated PVA films 

 

4. CONCLUSIONS 
 

It is evidenced from the above studies that an in-

crease in water contact angle by 85° and large increase 

in the water solubility time, in comparison with that of 

pure PVA films. Thus, the shock treated samples shift-

ed from hydrophilic nature to the hydrophobic. This 

improvement for PVA films could be associated with 

the decreased hydroxyl groups in the PVA and increase 

in carbon content as evidenced by FTIR and EDAX 

studies. This remarkable shift from hydrophilic to hy-

drophobic nature of shock treated PVA films promises 

the future of PVA for the biodegradable environmental 

friendly polymer as packaging material. 
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