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Abstract: A review of modern methods of forming a math-
ematical model of power systems and the development
of an intelligent information system for monitoring elec-
tricity consumption. The main disadvantages and advan-
tages of the existingmodeling approaches , as well as their
applicability to the energy systems of Ukraine and Kaza-
khstan,are identified. The main factors that affect the dy-
namics of energy consumption are identified. A list of the
main tasks that need to be implemented in order to de-
velop algorithms for predicting electricity demand for var-
ious objects, industries and levels has been developed.

Keywords: prediction, power consumption, panel mod-
els,autoregression models, neural networks

1 Introduction
Creation of innovative intellectual systems for managing
energy consumption processes is a vital task for individual
objects (institutions), countries, and for the global econ-
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omy as a whole. Solving such urgent problems as reduc-
ing energy consumption, ensuring energy independence,
reducing greenhouse gas emissions requires identifying
adequate methods for analyzing, modeling and forecast-
ing time series of consumption and production of various
types of energy, their integrationwith existing information
systems for making management decisions across individ-
ual enterprises, cities, industries and states. The lack of de-
velopment of theoretical and methodological approaches
and practical aspects of the use of forecasting systems and
evaluating the efficiency of electricity use in Kazakhstan
and Ukraine actualize the need to create integrated auto-
mated energy management systems using modern meth-
ods of machine learning.

The purpose of this work is to compare modern meth-
ods of analysis, modeling and forecasting the consump-
tion of electric energy at the national, sectoral and individ-
ual (by facilities) levels, as well as to study the experience
of their use in various countries and industries.

In this paper we have used classical statistical “ad
hoc”models, advanced ensemblemethods and neural net-
works to predict electric power demand with a case of the
wholesale energy transmission company.

The rest of the paper is organized as follows:Section
2, contain Literature review, Section 3discuss the Compar-
ative analysis of the methods and models, Section 4 con-
tain Application and Results, the Conclusion of the study
is provided in Section 5.

2 Literature review
The ubiquity of modern technological devices for measur-
ing the amount of energy consumed has contributed to the
development of engineering and statistical analysis meth-
ods, whichmake it possible to effectively plan, predict and
monitor the growing load on the power grid.

Over the past decade, research has intensified in the
area of forecasting electricity consumption for industrial,
municipal, and energy distributing enterprises, housing
complexes, business structures, and individual houses [1–
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5]. This is due to the need to ensure the energy efficiency of
buildings, recognized by the International Energy Agency
(The International Energy Agency) as one of the five condi-
tions that reduce the final energy consumption and associ-
ated CO2 emissions [6]. Environmental prerequisites and
economic feasibility contributed to the development of na-
tional energy-efficient design rules for various types of
buildings, which gave impetus to the development of com-
puter software for energy-efficient design of new homes,
such as EnergyPlus, DOE-2, eQUEST, IES, ECOTECT, etc.
[7].

Maintaining energy efficiency in buildings requires
continuous monitoring of energy consumption indicators
and identifying factors that affect them in real time. Most
researchers identify weather conditions as the main fac-
tors determining the dynamics of demand for electricity.
These include: temperature indicators (air, environment,
dry lamps, dew point, wet point, room temperature); in-
dicators of humidity, pressure, wind speed and direction,
cloudiness and brightness of the sun; precipitation [8].
Among additional independent factors, the authors use
variables of electrical load, heat transfer, or thermal in-
dex in models; calendar variables; size indicators and
operational characteristics of buildings, urban infrastruc-
ture development; indicators of living standards and socio-
economic development [8].

For example, to predict the demand for electricity in
the residential sector of Chile [4], the authors use data on
average daily energy consumption in kWas the dependent
variable, variables of average daily temperature in Celsius,
and daily value per unit account of Chile as explanatory
variables. To display calendar effects, researchers include
dummy variables, namely, a variable for all Saturdays, a
variable for all Sundays, and a variable for holidays in the
study interval [4]. It should be noted that the frequency of
the time series used in the models is determined by the
source and availability of data.

So, in the work [5] the hourly rows of electricity con-
sumption are presented, in the study [3] - half-hour data
with an annual time interval. Accordingly, the forecasts
obtained on such a sample can only be short-term, for ex-
ample, for a week. To obtain medium-term and long-term
forecasts, models estimated using higher frequency data
(for example, monthly [9]) and a longer time interval (sev-
eral decades) are used. Real-time forecasting requires the
acquisition of data from instrumentation by the minute or
by the second.

An analysis of open statistical information on electric-
ity consumption in Ukraine and Kazakhstan [10, 11] shows
that the statistics on gross electricity consumption by all
sectors of the economy are available only by year; Indi-

cators of final consumption, taking into account renew-
able energy sources in the context of households, indus-
trial sectors, transport, services, agriculture, forestry and
fisheries, as well as non-energy energy consumption, have
been available only since 2007. You can get monthly re-
ports from relevant ministries [12] indicators of gross en-
ergy consumption in the country, and only within the last
decade.

A comparative analysis ofmethodological approaches
to the calculation of the energy security indicator revealed
a number of weaknesses in the national systems for as-
sessing energy security as part of the country’s national
security. In particular, the shortcomings of the approach
to calculating the level of energy security of Ukraine [13]
are identified. These include: the limited range of aspects
of energy security for which the assessment is carried out,
the lack of a base for comparison and a long series of sta-
tistical data on energy security indicators, a slow update
of the threshold values of indicators embedded in the ra-
tioning algorithm. In addition to the domestic approach,
an analysiswas conducted ofmethods for assessing the en-
ergy security risk index developed by the United States In-
stitute of Energy and the International Energy Agency [14];
a comparative analysis of thesemethodswith thedomestic
approach. According to the results of the analysis, differ-
ences were found in the rationing of individual indicators,
the quality characteristics of individual indicators and the
method for determining the respective weights for each
indicator. It was proposed to include indicators such as
market volatility, energy intensity indicators, the state of
global and regional fuel stocks, etc., into the list of indi-
cators of the country’s energy security. To solve the prob-
lem of modeling real statistical data represented by differ-
ent frequencies, it was proposed to use mixed frequency
models, Mixed-Data Sampling Models (MIDAS) [15], to de-
termine the relationship between possible energy security
factors and the energy efficiency of the national economy.

One of the solutions to the problem of a small sample
of data to obtain adequate statistically significant results
and qualitative forecasts can be the use of panel models
that evaluate similar indicators for a group of objects, for
example, all educational institutions in the region, regions
of the country or countries with similar development pa-
rameters.

Thus, article [16] used a panel sample of annual data
on the consumption of electricity by residential buildings
in the context of Chinese cities to identify the most signif-
icant factors of the construction of "green houses". The
authors of [17] examine the demand for electricity in the
industrial and service sectors of Taiwan, analyzing panel
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data for 23 industrial sectors and 9 service sectors for the
period 1998-2015.

Article [18] assesses the efficiency of electricity con-
sumption for an unbalanced group of 27 countries in tran-
sition and 6 OECD member countries in Europe from 1994
to 2007. Thus, it can be concluded that for countries such
as Kazakhstan and Ukraine, models based on panel data
are the most acceptable.

At the same time, the focus of scientific research in
these countries should be biased towards modeling elec-
tricity demand by individual objects that have the appro-
priate equipment to measure high-frequency fixation elec-
tricity consumption, followed by extrapolation of the re-
sults to higher levels (industry, regional).

The above approach is presented in detail in the work
of Canadian scientists [16], who identified twomethods for
modeling the demand for electricity in the residential sec-
tor: "top down" and "bottom up".

The first approach focuses on identifying key factors
and forecasting electricity consumption by housing ob-
jects of different levels depending on historical housing
data and top-level variables, which include macroeco-
nomic indicators (gross domestic product, unemployment
rates and inflation), prices for various types of energy, cli-
matic factors.

The second approach is based on the use of statistical
and engineering methodologies for predicting electricity
consumption at the regional and national levels by extrap-
olating the indicators of a representative set of individual
houses [19].

It should be noted that engineering models that de-
scribefinal energy consumptionas anatural phenomenon,
based on physical laws and do not require historical data
on energy consumption, are now practically not used. The
rapid increase in the sources and volumes of data, their
processing technologies and processing system capacities
contributed to the shift of scientific interests towards sta-
tistical methods.

The variety of statistical models is due both to differ-
ences in the data structure (linear and nonlinear; discrete
and continuous models), as well as the development of
machine learning methods and software tools that imple-
ment them. Parametric and non-parametric methods that
can be classified into regression, autoregression methods,
Fourier models, neural networks, models of fuzzy logic,
Wavelet analysis, Bayesian methods are widely used.

The use of parametric methods implies the availabil-
ity of information on the nature of the distribution of data,
which is fraught with the receipt of biased estimates of pa-
rameters and false conclusions in the case of an incorrectly
chosen model. For those cases where the present distribu-

tion of data is unknown, the use of non-parametric meth-
ods is preferred. A significant drawback and limitation of
non-parametric models, focused more on testing hypothe-
ses than on estimating parameters, is the complexity of
their calculations and high requirements for software and
hardware [4].

3 The comparative analysis of the
methods and models

Modern time series forecasting methods are based mainly
on the principle of historical prediction of the future. The
peculiarity of the energy consumption indicators is the
presence of multidirectional trends, seasonal and cycli-
cal fluctuations, structural breaks, makes certain require-
ments for the selection of appropriate methods and mod-
els. This paper represents a comparative study of ap-
proaches that can be used to make reliable predictions
of energy consumption on macro, micro and sectoral lev-
els, as well as to reveal significant predictors and causal
relationships for policy conclusions. Additional interest
point is model selection for energy consumption time se-
ries of different data frequency. The study focuses on
classical time series techniques (autoregressions, expo-
nential smoothing models, dynamic regressions), ensem-
ble models and neural networks, capable to handle non-
stationarity, heteroscedasticity, serial correlation of non-
stable short-term data.
The methods for extrapolation past information to the
future are constantly being improved in terms of com-
plexity, interpretation and forecast accuracy. In the last
decades scholars’ attention has shifted from structural
models based on the system of equations and restrictions
on parameters to special “ad hoc” models that are not the-
oretically justified. Although statistical techniques based
on the Gauss least squares (OLS), non-linear least squares
(NNLS) and the maximum likelihood (MLE) estimation
are highly used, technologies’ innovations forced active
development of machine learning forecasting methods.
Multi-Layer Perceptron (MLP), Bayesian Neural Network
(BNN), Generalized Regression Neural Networks (GRNN),
K-Nearest Neighbor regression (KNN), Classification And
Regression Trees (CART), Support Vector Machine (SVM)
demonstrated good experimental results [20]. Still, numer-
ous studies [1, 4, 7, 20] report bettermodel fittingbutworse
forecasting accuracy of these methods comparing to sta-
tistical models. The researchers [20] state the need for im-
provement and further development of machine learning
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models in terms of their better interpretability and specifi-
cation of the uncertainty around the point forecasts.

3.1 Autoregressive approach

One of the most widely used classical “ad hoc” time series
techniques is Autoregressive moving average (ARMA) or
Autoregressive integrated moving average (ARIMA) mod-
els that apply the Box-Jenkins methodology [21]. These
models predict time series’ future values based on a linear
combination of its previous values and disturbances. The
ARIMAmodel with parameters p (the autoregressive order
or the lag of the model), d (the integration or differencing
order), q (the moving average order) fit an equation:

∆dyt = c + φ1∆dyt−1 + ... + φp∆dyt−p + θ1εt−1 + ... (1)
+ θqεt−q + εt

Here yt represent the actual time series values in time
period t; ∆d = (yt−1 − yt)d is the difference operator of
the dth order, applied to remove a stochastic trend; φ1,...,p,
θ1,...,q are the parameters of the model; εtis a error term
that is assumed to be a stationary Gaussian white-noise
process with mean zero and constant variance σ2 [21].
Model (1) can be rewritten using backshift lag operator (L)
notation as:

ϕ(L)(1 − L)Dyt = c + θ(L)εt (2)

A special case of model (1) is the Seasonal autoregressive
integrated moving average model SARIMA (p, d, q)×(P, D,
Q)s [21]:

Φ(Ls)ϕ(L)∆d∆Ds yt = θ0 + Θ(Ls)θ(L)εt , (3)

where s is the seasonal length – the number of periods in
a season (s=12 for monthly series); L is the lag operator; ∆Ds
is the seasonal difference operator.

An iterative modeling approach implies assessing sta-
tionarity and seasonality patterns; identification of the
model parameters and their estimation with maximum
likelihood or non-linear least squares methods; checking
adequacy and prediction accuracy of the model [22].

A common technique to assess the stationarity of the
series is the Augmented Dickey-Fuller (ADF) test. It esti-
mates the model (4) to test the null hypothesis of a unit
root against the alternative of stationarity [23]:

∆yt = α+βt+(ρ−1)yt−1+δ1∆yt−1+...+δp−1∆yt−p+1+εt , (4)

where α is a constant, β the coefficient of a simple time
trend, ρ is the parameter of interest, ∆ is the first dif-
ference operator, δi are parameters and p the lag or-
der of the autoregressive process.Specification of the

ARMA/ARIMA/SARIMAmodels is commonly facilitated by
the graphical analysis of the correlograms (the autocorre-
lation function, ACF, and partial autocorrelation function,
PACF) of the original and differenced series [21]. Selection
the optimal model parameters (p, d, q), (P, D, Q) is justi-
fied by minimization of the information criteria (see Ap-
pendix 1). The Hyndman-Khandakar algorithm automates
this procedure with the function auto.arima of the “fore-
cast” R package [22].

To eliminate the problem of unreliableMLE parameter
estimation and to reveal unobservable state of the series
frequently the Kalman filter algorithm is used for ARIMA
state-space models [24].

In the presence of the consistent change in the vari-
ance over time, the Autoregressive model of conditional
heteroscedasticity (ARCH) [25] or Generalized uutoregres-
sive conditional heteroscedasticity model of (GARCH) are
appropriate [26]. Themodels predict the future conditional
and unconditional variance presuming the stationarity of
the series (no trend or seasonal component) [26]:

εt = σtzt (5)

Here the error term εt accounts for a stochasticwhite-noise
process zt, and a time-dependent standard deviation,σt.

For ARCH(q) the squared innovations σ2t are modeled
as:

σ2t = α0 + α1ε2t−1 + ... + αqε2t−q , (6)

where α0 > 0 and αi ≥ 0, i > 0 for all t.
For GARCH(p, q) the series σ2t is modeled as:

σ2t = k + 𝛾1σ2t−1 + ... + 𝛾pσ2t−p + α1ε2t−1 + ... + αqε2t−q , (7)

Here p and q are nonnegative integers, representing
the number of lagged conditional variances and the lagged
squared innovations, respectively.

GARCH models have numerous applications in finan-
cial time series analysis. The ARIMA/SARIMAX models fit
energy consumption series better due to relatively stable
dynamics and seasonal characteristics.

Despite the active development of machine learning
models, autoregressive methods (ARMA/ARIMA/SARIMA,
dynamic regression models, vector autoregressions, VAR,
and cointegrationmodels, VEC) are still widely used to pre-
dict the electric energy consumption.

The researchers emphasize the improved forecast ac-
curacy of the SARIMAX models [1, 4, 22], which assesses
not only historical energy consumption data, but addi-
tional exogenous variables as well. Thus, considering holi-
days’ and weather effects, changes in the law, market sit-
uation and demographics, may explain significant data
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variation givingmore reliable predictions. Dynamic regres-
sion models that include external variables and allow the
model errors to contain autocorrelationdescribing themas
ARIMA process showed good results as well [22, 27].

A common way to account for causality of nonstation-
ary series, make structural inference and policy conclu-
sions is to use vector autoregressive (VAR) models and
structural vector autoregressive (SVAR) models. They treat
simultaneous sets of variables equally, regressing each en-
dogenous variable on its own lags and the lags of all other
variables in a finite-order system [28]. The basic p-lag VAR
has the form:

Yt = c + Π1Yt−1 + ... + ΠpYt−p + εt , t = 1, ..., T , (8)

where Yt = (y1t , y2t , ..., ynt)′ is an (n × 1) vector of time
series variables; Πi are (n × n) coefficient matrices; εt is an
(n × 1) unobservable zero mean white noise independent
vector process with time invariant covariance matrix

∑︀
.

The simplicity of estimation and interpretation of
VAR/SVAR models with impulse response functions and
forecast error vector decompositions made them a good
alternative to structural models. The authors [29] used
VAR approach to empirically prove the existence of bi-
directional causality between electricity consumption and
GDP in Russia.

The drawbacks of VAR approach in terms of explain-
ing the long-term dynamics of the series is successfully re-
alized by the Vector error correction models, VECM, used
to describe the cointegration relationships between the
variables. The basic VECM form a relationship [30]:

∆Yt = ΦDt + ΠYt−1 + Γ1∆Yt−1 + ...Γp−1∆Yt−p+1 + εt (9)
Π = Π1 + ... + Πp − In

Γk = −
p∑︁

j=k+1
Πj , k = 1, ..., p − 1,

where ∆Yt and its lags are differenced I(0) series; Dt is a
deterministic term; ΠYt−1 contains the cointegrating rela-
tions.

Authors [31] employed Johansen cointegration to de-
termine the long run relationship between energy con-
sumption and its determinants for different sectors and to
forecast future energy demand using scenario analysis.

Taking into consideration deep theoretical develop-
ment, outstanding empirical results, simplicity and feasi-
bility of justification and deployment, autoregressivemod-
els are highly recommended for use in experimental stud-
ies. It is important to mention that vector autoregressive
and cointegration models are suitable mostly for macroe-
conomic analysis of energy consumption by sectors, re-
gions and sources. ARIMA/SARIMAX models

3.2 Exponential smoothing approach

Exponential smoothing is a powerful time series forecast-
ing method for univariate data, frequently used as an al-
ternative to autoregressive approach. This framework has
multiple applications in different fields of studies due to
its flexibility, reliability of the forecasts and low expenses.
Proposed in the late 1950s [32] this approachhasmotivated
some of the most successful forecasting methods.

The taxonomy of exponential smoothing models dif-
fers depending on the trend and seasonality nature. The
simple exponential smoothing model applicable for data
with no clear trend or seasonality produces forecasts as
weighted averages of past observations, decaying expo-
nentially depending on the timing of observations [22]:

ŷt+1|t = αyt + α(1 − α)yt−1 + α(1 − α)2yt−2 + ..., (10)

where 0 ≤ α ≤ 1 is the smoothing parameter.
Holt-Winters additive and multiplicative models sug-

gested improvement of the model (16) to account for trend
and seasonal patterns [22]. Themore advanced state space
exponential smoothingmodelswith additive ormultiplica-
tive errors contain ameasurement equation that describes
the observed data, and some state equations that describe
how the unobserved components or states (level, trend,
seasonal) change over time [22]. One of the most success-
ful recent advancement in exponential smoothing state
spacemodels refers to TBATSmodelwith Box-Cox transfor-
mation, ARMA error, trend and representation of seasonal
components byFourier series [33]. This approachproduces
high accuracy forecasts handlingmultiple nested andnon-
nested seasonality. Although it requires extra calculation
time, especially for big time series data.

The general representation of TBATS model (11) in-
cludes level (12), trend (13), seasonal (14) and ARMA error
term (15) equations:

y(ω)t = lt−1 + ϕbt−1 +
T∑︁
i=1

s(i)t + dt(11) (11)

lt = lt−1 + ϕbt−1 + αdt (12)

bt = (1 − ϕ)b + ϕbt−1 + βdt (13)

s(i)t = s(i)j, t−1cosλ
(i)
j + s(i)j, t−1sinλ

(i)
j + 𝛾idt (14)

dt =
p∑︁
i=1

φidt−i +
q∑︁
i=1

θiεt−i + εt (15)
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Here y(ω)t is Box-Cox transformed observations at time
t with the parameter ω; lt is the local level at time t; b is
the long-run trend; bt is the short-term trend at time t; sea-
sonal periods; s(i)t is ith seasonal component of the series
at time t; dt is an ARMA(p, q) error process; εt is the Gaus-
sianwhite-noise processwith zeromeanand constant vari-
ance; α, β, 𝛾i are smoothing parameters; ϕ is damped pa-
rameter; s(i)j, t−1 is the stochastic level; ki is the number of
harmonics for the ith seasonal component, λ(i)j = 2πj/mi

where mi is period of the ith seasonal cycles [33].
Papers [7, 34, 35] verified excellent forecast accuracy

characteristics and opportunities for long-term forecast of
electric energy demand using TBATS and based on it hy-
brid models.

Other useful models based on time series smoothing
and decomposition are Seasonal and Trend decomposi-
tion using Loess (STL) and Multiple Seasonal Decomposi-
tion (MSTL). They use local regression nonlinear smooth-
ing algorithm (Loess) for parameter estimation [22].

3.3 Machine learning methods

Artificial intelligence methods are becoming increasingly
popular in the scientific and business environment [20].
There are numerous applications of machine learning
methods in forecasting energy consumption and demand
[5, 7, 8, 17, 19, 35].

Deep learning with artificial neural networks (ANN)
are widely used and discussed nowadays. A significant ad-
vantage of ANNmodels is their ability to model non-linear
relationships not restricting on the stationarity of the pa-
rameters. Its shortcoming refers to the requirement of big
data sample for training and complexities with interpreta-
tion of the "black box" output.

Neural network is organized in form of layers having
the predictors’ or inputs’ bottom layers, the forecasts’ or
outputs’ top layer and intermediate layers containing “hid-
den neurons” [22]. Frequently used nonlinear autoregres-
sive neural networks model NNAR(p, P, k)m [36] can be de-
scribed by the following equation:

y′t = f (yt−1, yt−2, ... , yt−p , yt−m , yt−2m , yt−Pm + εt , (16)

where p, P represent lagged autoregressive and seasonal
inputs respectively, k – nodes in the hidden layer,m – the
number of seasonal periods’ inputs

Another ANN model that showed outstanding fore-
casting abilities is Multi-Layer Perceptron (MLP), where
each layer of nodes receives inputs from the previous lay-

ers. The matrix notation of the MLP model is:

f (x) = G(b(2) +W (2)(s(b(1) +W (1)x))) (17)

h(x) = Φ(x) = s(b(1) +W (1)x) (18)

o(x) = G(b(2) +W (2)h(x)), (19)

Here b(1), b(2)are the bias vectors; W (1),W (2) are weight
matrices connecting the input vector to the hidden layer;G,
s – activation functions; h(x) forms the hidden layer; o(x)
is the output vector.

The proposed MLP approach [37] was used to classify
residential buildings according to their energy consump-
tion and make corresponding hourly predictions for high
and low power consumption buildings.

To sum up, neural networks models often provide an
ideal approximation of actual and predicted data within
a training sample, but in the case of insufficient train-
ing data, give large forecast errors. A variety of methods
are used to improve predictive qualities of ANNs, includ-
ing cross-validation, noise reduction, error regularization,
error-reversal method, optimized approximation, SVM al-
gorithms [22].

Currently, scientists are offering a range of hybridmod-
els that are based on two or more traditional machine
learning techniques or artificial intelligence methods [7,
19, 35]. Traditional methods for predicting time series,
such as ANN and ARIMA, are complemented by optimiza-
tion methods – Particle Swarm Optimization Algorithm
(PSO), genetic algorithm, ant colony genetic algorithm etc.
For instance, in paper [8] the authors introduced the hy-
brid model that combines the ARIMA model to identify
periodicity, seasonality and linearity with an evolution-
ary algorithm (EA) for efficiently determining and optimiz-
ing residuals. Researchers [35] developed a hybrid model
based on the TBATS and neural networks algorithms to
forecast the electricity load demand.

Ensemble methods build a model by training sev-
eral relatively simple base models (also known as weak
learners) and then combine them to create a more predic-
tive model. The most well known ensemble learning al-
gorithms use bootstrap aggregation, also known as bag-
ging (Breiman 1996); random forests (Breiman 2001); ex-
tremely randomized trees, also called extra trees (Geurts
et al. 2006); and boosting (Schapire 1990). The bagging, ex-
tra trees, and random forests are based on a simple averag-
ing of the base learner, while the boosting algorithms are
built upon a constructive iterative strategy.

The recent advances in machine learning methods re-
fer to ensemble methods that combine several low accu-
racy base models (“weak learners”) are used to create a
higher quality predictive model (“strong learner”). The
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most popular ensemble learning algorithms are bootstrap
aggregation (also known as bagging); random forests; ex-
tremely randomized trees (also known as extra trees), and
boosting [38]. The first three methods are based on a sim-
ple averaging of the base models, while boosting meth-
ods apply iterative optimization algorithms based on deci-
sion trees andminimizationof the loss function [39]. Boost-
ing algorithms like Gradient Boosting [39], XGBoost, Ad-
aBoost, Gentle Boost are frequently demonstrate state-of-
the-art results at Kaggle and other machine learning com-
petitions [40]. The improvement of prediction accuracy by
the gradient boosting machine model comparing to piece-
wise linear regression and to a random forest algorithm
have been proved in [38] on the example of energy con-
sumption of commercial buildings.

4 Application and Results
In this sectionwe use the hourly energy consumption data
(2012 – 2017) of the US wholesale transmission organiza-
tion [41] to test the prediction accuracy and deployment
features of the statistical and machine learning methods
described in Section 3. Visual inspection of the electricity
consumption time series point on the possible sources of
data variation, including weather, holidays, daily, weekly
and monthly periodicity (Figure 1).

Figure 1: Hourly electricity consumption in MW, 2012-2018.

It is expected that the electricity consumption should
be lower during weekends and nights, and may be higher
at holidays and in summer andwinter months. To account
for possible multiple seasonality different exogenous vari-
ables are considered: outside air temperature, time of the
week, hour of the day. The models are implemented in R
programming language using ‘Forecast’ [42], ‘Segmented’
[43], ‘XGBoost’ [44], ‘rnn’ [45] R packages. To check the

prediction accuracy of the models the dataset is split into
training (49660 observations) and test (2944 observations)
data sets.

The study compares results for univariate and multi-
variate models. Predictions, based on the univariate series
of electricity consumption, include:

1. Autoregressive Integrated Moving Average models
(ARIMA);

2. Exponential smoothing state space model with Box-
Cox transformation, ARMA errors, Trend and Sea-
sonal components (TBATS);

3. Multiple Seasonal Decomposition model (MSTL);
4. Dynamic Harmonic Regression with ARMA error

term.

For multivariate time series analysis we estimate
ARIMA, piecewise linear regression that include addi-
tional input variables. To improve the prediction accuracy
of the energy consumptionmodeling we used the gradient
boosting [44] and neural network [45]machine learning al-
gorithms.

Tables 1-2 demonstrate the model and forecast accu-
racy for training and test sets.

The energy consumption models are ranked by the
forecast accuracy in this order:

1. Recurrent multilayer perceptron network (RMLP)
with four selected input features.

2. Gradient boosting tree model with input variables
(date, hour, day of week, month, quarter, year, day
of week, day of month, week of year).

3. Piecewise linear regression with exogenous vari-
ables (air temperature – used for segmentation, day
of the week, hour of the day).

4. Nonparametric multiple seasonal decomposition
model (MSTL) with daily, weekly and yearly season-
ality.

5. Autoregressive integrated moving average models
(ARIMA) with exogenous variables (air temperature,
day of the week, hour of the day).

The ARIMA model fits the following equation (with
standard error given in brackets):

yt =
1.802yt−1
(0.003)

− 0.879yt−2
(0.003)

− 1.168εt−1
(0.007)

(20)

+ 0.213εt−2
(0.007)

+ 0.611 · Temperature
(0.148)

+ 0.188 · day_of_week
(0.285)

+ 0.762 · hour_of_day
(0.031)

+εt
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Table 1:Model accuracy for training data sets.

ME RMSE MAE MPE MAPE MASE ACF1 AIC
Baseline µy mean value −8.5e−14 297.20 232.17 −3.18 14.46 4.62 0.97 NA

TBATS 6.85e−03 41.03 25.31 −0.04 1.58 0.50 0.043 147954.9
MSTL −0.0036 28.67 18.34 −0.02 1.16 0.36 0.086 NA

Dynamic harmonic
regression

0.32 43.34 28.11 −0.039 1.75 0.56 0.03 NA

ARIMA (2,1,2) 1.97e−04 35.76 26.49 −0.028 1.62 0.55 0.018 430150.7
ARIMA (2,1,2) with Xreg 3.65e−04 35.49 26.22 −0.026 1.61 0.54 0.021 429599.4

Piecewise linear regression −1.62e−7 101.48 62.6 −0.10 3.91 1.23 0.11 553966.8

Table 2: Forecast accuracy for test data sets

ME RMSE MAE MPE MAPE MASE
Baseline mean value µy −8.9e+01 323.14 268.81 −9.77 18.45 5.35

TBATS 4.3e+02 515.81 440.46 28.16 28.97 8.76
Dynamic harmonic regression 236.13 361.49 274.90 12.99 16.05 5.47

ARIMA (2,1,2) with Xreg −1.1e+02 252.90 199.98 −10.27 14.57 4.15
MSTL 96.88 278.27 206.52 3.91 12.38 4.11

Piecewise linear regression −112.31 164.84 135.55 −7.92 9.31 3.09
Gradient Boosting 70.04 158.46 130.31 −7.61 8.95 2.97
Neural network 27.38 61.97 50.96 −2.97 3.5 0,99

In model (20) the exogenous variable day_of_week
turns to be insignificant. According to the Hyndman-
Khandakar algorithm [22] the optimal ARIMA model
doesn’t include any seasonal parameters. At the same time
variables Temperature and hour_of_day significantly influ-
ence the hourly energy consumption.

Dependency of the energy consumption on the year
seasons (rise in summer andwintermonths and slowdown
in the rest of the year) explain the choice of the piecewise
linear regression. Effect of temperature on electricity con-
sumption is presented in Figure 2.

Figure 2: Temperature effect on the energy consumption

The estimated temperature breakpoint by segmenta-
tion algorithm [43] is 287.74 degrees of Kelvin. The piece-
wise model explains 74.42% of electricity consumption
variation. The Temperature coefficients of the piecewise
linear model are given in (21), the full model is given in
Appendix 2.

y =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

6289.88 − 17.45Temperature
(36.08) (0.129)

6289.88 − 71.60 × 287.74
+(287.74 − 17.45)Temperature

(36.08) (0.32)

(21)

for x ≤ 287.74
for x > 287.74

Gradient boosting [44] and neural network machine
learning algorithms used in the study are based on the ex-
traction of the influential data features for models’ train-
ing. The main features of the energy consumption time
series are hour, day of week, month, quarter, year, day
of week, day of month, week of year. Feature importance
according to the gradient boosting tree algorithm is pre-
sented in Figure 3.

Detailed analysis of the errors of the gradient boosting
model revealed the worst prediction accuracy for holidays.
Inclusion of holidays’ dummy variable (takes 1 if the day
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Figure 3: Gradient boosting: feature importance.

is a holiday and 0 otherwise) helped to improve the fore-
cast accuracy MAPE to 5.45%. Estimated neural networks
model showed the best forecast accuracy using two layers
and four input variables that form the most important fea-
tures of the energy consumption series. At the same time
empirical analysis revealeddeterioration of the forecast ac-
curacy of the estimatedmachine learningmethods in favor
of TBATS and ARIMA model with exogenous variables.

5 Conclusions
The paper contains analytical review of theoretical and
practical issues of effective energy management system
based on the analysis of internal (technical, economic,
structural, regime) and external (meteorological, environ-
mental, energy, macroeconomic) factors. A comparative
assessment of modeling techniques used to forecast elec-
tricity demand is considered. Two areas of research have
been identified: forecasting electricity consumption based
on panel data (by countries; regions; sectors, industries)
and by individual objects that have the appropriate equip-
ment to measure high-frequency consumption.

The findings point on the evolving shift from classical
regression models to machine learning algorithms. Classi-
cal statistical techniques are still used but mostly in terms
of hybrid models designed to reduce the model error or
eliminate the existing assumptions for parameter estima-
tion. In this respect, exponential smoothingmodel TBATS,
seasonal trend decompositionmodel STL and seasonal au-
toregressivemodel SARIMAX form the top list of statistical
techniques according to publications’ review and empiri-
cal assessments.

The empirical analysis proves the extreme importance
of clean high-frequency long statistics for high accuracy
forecasts of energy consumption. Verification of signifi-

cant independent variables that explain variation of en-
ergy consumption is found to be another factor that im-
proves the quality of predictions, especially for short data
samples.

The increasing popularity of machine learning meth-
ods, and gradient boosting and neural networks in partic-
ular, is their ability to extract features from the series and
include them in themodelswithout specifying the parame-
ters, as is the casewith standard statistical algorithms. The
empirical study proved their superiority in terms of fore-
cast accuracy, especially for long samples. Besides these
models are less prone to overfitting and let the user to
include non-significant variables and parameters without
the loss in the predictability of the model [38]. The empir-
ical model evaluation in RStudio Integrated Development
Software revealed problems associated with huge compu-
tation time undertaken for neural networks model. The
XGBoost gradient boosting algorithm realized in [44] suffi-
ciently decreases this time applying paralleling technique.
Stillmuch effort should be taken to help the final user to in-
terpret these models not only by the accuracy metrics, but
also by the “black box” investigation. Real time analytical
solutions enabling in-time detection of the energy demand
and its high and lowpicks, require further research consid-
erations.
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Appendix 1
Statistical Metrics to Evaluate Model Adequacy and Fore-
cast Accuracy

To check the model fit we need to check significance
of the coefficients, overall model adequacy and stability,
correspondence to themodel assumptions: no serial corre-
lation, homoscedasticity and normal distribution of resid-
uals.

Themodel adequacy is estimated on the basis of resid-
ual standard error (σ2), coefficient of determination (R2)
that refers to the percentage of energy consumption vari-
ance explained by the model:

R2 =
[︃
1 −

1
n
∑︀n

i=1(yt − ŷt)
2

var(y)

]︃
× 100 (22)

The model selection among alternatives is based on the
information criteria usage. Akaike (AIC) and Schwarz
Bayesian (BIC) criteria choose the most parsimonious
model from the degrees of freedom point of view [23].

AIC = ln
(︂
ε′ε
T

)︂
+ 2(p + q)

T (23)

BIC = ln
(︂
ε′ε
T

)︂
+ (p + q)

T ln T (24)

The accuracy of the forecasts is verified on the basis of the
following error measurements [22]:

1. ME (Mean Error):

ME = 1
n

n∑︁
t=1

(︀
yt − ̂︀yt)︀ (25)

2. RMSE (Root Mean Squared Error):

RMSE =

⎯⎸⎸⎷1
n

n∑︁
t=1

(︀
yt − ̂︀yt)︀2 (26)

3. MAE (Mean Absolute Error):

MAE = 1
n

n∑︁
t=1

|yt − ̂︀yt| (27)

4. MAPE (Mean Absolute Percentage Error):

MAPE = 1
n

n∑︁
t=1

| yt − ŷtyt
| (28)

5. MASE (Mean Absolute Scaled Error):

MASE = 1
n

n∑︁
t=1

⃒⃒⃒⃒
⃒ yt − ŷt

1
T−m

∑︀T
t=m+1 |yt − yt−m|

⃒⃒⃒⃒
⃒ (29)

Here m is the number of seasonal periods, for non-
seasonal time series m=1.

Serial correlation can be assessed with autocorrela-
tion function (ACF). ACF at lag=1 can be expressed as [22]:

ACF1 = r1 =
∑︀T

t=2 (yt − y) (yt−1 − y)∑︀T
t=1 (yt − y)

2 , (30)

where yt is the actual value of the series; y is the mean
value of the series; T is the number of time periods.

Appendix 2
***Regression Model with Segmented Relationship(s)***
segmented.lm(obj = lm(DUQ_MW ∼ Pittsburgh +
hour_of_day + day_of_week,temp_power_train), seg.Z =
∼Pittsburgh)
Estimated Break-Point(s):
Est. St.Err
psi1.Pittsburgh 287.742 0.039
Meaningful coefficients of the linear terms:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 6289.8786 36.0835 174.315 < 2e-16 ***
Pittsburgh -17.4485 0.1295 -134.783 < 2e-16 ***
hour_of_day01 -57.8623 5.0219 -11.522 < 2e-16 ***
hour_of_day02 -89.0548 5.0285 -17.710 < 2e-16 ***
hour_of_day03 -106.9933 5.0321 -21.262 < 2e-16 ***
hour_of_day04 -111.4492 5.0311 -22.152 < 2e-16 ***
hour_of_day05 -94.6977 5.0331 -18.815 < 2e-16 ***
hour_of_day06 -37.7681 5.0343 -7.502 6.4e-14 ***
hour_of_day07 53.9267 5.0357 10.709 < 2e-16 ***
hour_of_day08 127.5685 5.0367 25.328 < 2e-16 ***
hour_of_day09 183.5881 5.0373 36.446 < 2e-16 ***
hour_of_day10 235.9642 5.0384 46.833 < 2e-16 ***
hour_of_day11 275.7144 5.0376 54.732 < 2e-16 ***
hour_of_day12 297.0947 5.0323 59.038 < 2e-16 ***
hour_of_day13 297.5840 5.0283 59.182 < 2e-16 ***
hour_of_day14 291.9243 5.0226 58.122 < 2e-16 ***
hour_of_day15 274.3167 5.0199 54.646 < 2e-16 ***
hour_of_day16 251.7429 5.0204 50.144 < 2e-16 ***
hour_of_day17 246.0881 5.0231 48.991 < 2e-16 ***

https://cran.r-project.org/web/packages/segmented/segmented.pdf
https://cran.r-project.org/web/packages/segmented/segmented.pdf
https://arxiv.org/abs/1603.02754
https://cran.r-project.org/web/packages/rnn/rnn.pdf
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hour_of_day18 255.1194 5.0254 50.766 < 2e-16 ***
hour_of_day19 239.2830 5.0284 47.586 < 2e-16 ***
hour_of_day20 214.1266 5.0295 42.574 < 2e-16 ***
hour_of_day21 200.5399 5.0269 39.893 < 2e-16 ***
hour_of_day22 160.0846 5.0251 31.857 < 2e-16 ***
hour_of_day23 79.5914 5.0213 15.851 < 2e-16 ***
day_of_week2 23.7112 2.7093 8.752 < 2e-16 ***
day_of_week3 34.0968 2.7093 12.585 < 2e-16 ***
day_of_week4 29.0373 2.7121 10.706 < 2e-16 ***
day_of_week5 2.6755 2.7123 0.986 0.324
day_of_week6 -119.0771 2.7121 -43.906 < 2e-16 ***
day_of_week7 -148.5501 2.7129 -54.756 < 2e-16 ***
U1.Pittsburgh 71.5975 0.3233 221.449 NA
Residual standard error: 150.4 on43027 degrees of freedom
Multiple R-Squared: 0.7442, Adjusted R-squared: 0.744
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