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checks [3, 4], can be applied to solve such tasks. Also well-
known today are, for example, polar codes [5] and turbo-
codes [6] with artificial redundancy.

The use of redundant information contained in the 
encoded words is the main criterion for any interference-re-
sistant codes, which is typically introduced into them arti-
ficially. There is also another type of redundant coding that 
uses natural redundancy in the coded words. Employing 
natural redundancy codes requires far less hardware to syn-
thesize encoding and decoding devices while using simpler 
algorithms to accomplish these tasks.

In addition, the application of codes with natural redun-
dancy in telecommunication systems, such as optical data 
transmission systems, can be greatly enhanced by using 

1. Introduction

The modern telecommunication systems must meet the 
requirements for the reliable transfer, high-speed perfor-
mance, processing, and storage of information. One of the 
main ways to improve the noise immunity of telecommu-
nication systems is to use error control codes. At the same 
time, telecommunication systems may employ a variety of 
anti-interference codes, starting from the simplest ones such 
as a parity-checking code to more sophisticated cyclical 
codes that can correct multiple errors. Various error control 
codes, such as cyclic block codes, which include, for exam-
ple, Bose–Chaudhuri–Hocquenghem codes, Reed-Solomon 
codes [1‒3], as well as the codes with a low density of parity 
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Given the need to improve the efficien-
cy of data transfer, there are requirements 
to ensure their reliability and quality under 
interference. One way to improve data trans-
fer efficiency is to use noise-resistant codes, 
which include a closed-form expression of 
the Fibonacci code, a parity check code, and 
a constant weight code. The result of apply-
ing these types of coding produces interfer-
ence-resistant end-to-end processing and 
transmission of information, which is a prom-
ising approach to improving the efficiency of 
telecommunications systems in today's envi-
ronment. This paper reports the estimation 
of the error detecting code capability of the 
Fibonacci code in a closed-form expression, 
as well as its comparative characteristic with 
a parity check code and a constant weight 
code for a binary symmetrical channel without 
memory. To assess an error detecting capa-
bility of the Fibonacci code in a closed-form 
expression, the probability of Fibonacci code 
combinations moving to the proper, allowable, 
and prohibited classes has been determined. 
The comparative characteristic of the indivis-
ible error-detecting codes is based on an aver-
age probability method, for the criterion of an 
undetectable error probability, employing the 
MATLAB and Python software. The method 
has demonstrated the simplicity, versatility, 
and reliability of estimation, which is close to 
reality. The probability of an undetectable error 
in the Fibonacci code in a closed-form expres-
sion is V=5×10-7; in a code with parity check, 
V=7.7×10-15; and in a constant weight code, 
V=1.9×10-15, at p10=3×10-9. The use of the aver-
age probability method makes it possible to 
effectively use indivisible codes for detecting 
errors in telecommunications systems
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the codes with artificial redundancy, employing the hybrid 
types of error control codes. In this way, one can achieve 
more effective indicators to protect transmitted and pro-
cessed data from errors, while using relatively less complex 
algorithms in encoding and decoding devices for hardware 
implementation. At the same time, codes with natural redun-
dancy are capable of executing end-to-end control of data. 
The end-to-end data control can be enabled both in digital 
devices and in transmission systems, which greatly improves 
the efficiency of telecommunication systems. The application 
of codes involving artificial redundancy does not allow for 
a through data control; it is designed only for error control 
tasks, either in communication channels or in information 
processing systems. This creates the task to effectively eval-
uate codes with natural redundancy, such as the indivisible 
error detection codes, for their further application in tele-
communication systems or digital devices.

2. Literature review and problem statement

Indivisible error-detecting codes with natural redundancy 
include, for example, the codes generated by such number sys-
tems as factorial [7, 8], binomial [9, 10], and Fibonaccian [11].

The factorial number system makes it possible to gener-
ate code permutations that can be used for interference-resis-
tant coding, with natural redundancy. The downside of fac-
torial codes, which, like permutations, are multi-digit codes, 
is that there is not a high level of effective interference-re-
sistant coding, even with additional artificial coding [7]. 
Paper [8] examines the factorial codes involving the Euclid 
and Hamming metrics. The authors report a comparative 
analysis of the probability of an undetectable error and the 
residual probability of mistaken factorial codes. The study 
results show that the factorial codes using the Hamming 
metric are more effective. However, there remain unresolved 
issues related to the comparative analysis of factorial codes 
with other types of coding and the methods for evaluating 
the error-detectable capability of indivisible codes.

The binomial number system makes it possible to gen-
erate a binomial code and ensures high interference resis-
tance while making it possible to detect binary errors of 
type 0→1 and 1→0. Binomial codes can be used effectively 
for end-to-end control, processing, and transmission of 
information. This type of coding is a rather complex struc-
ture; its interference resistance is recommended to be used 
in solving functional problems, for example, to generate 
compositions, to generate and sort combinatorial configura-
tions [9]. Work [10] evaluated the noise immunity of bino-
mial modified codes for the criterion of the probability of an 
undetectable error for symmetrical and asymmetric channels 
with independent errors. It is shown that at a certain level of 
interference in the communication channel, it is more appro-
priate to use binomial modified codes, which provide greater 
reliability of the transmitted data compared to the applica-
tion of linear cyclic block codes. The results show that the 
use of a binomial modified code ensures a high error-detect-
able capability in communication channels with high levels 
of asymmetry. However, there remain unresolved issues 
related to the comparative estimation of binomial modified 
codes with the Fibonacci code in a closed-form expression, 
with a parity-check code, and a constant weight code.

Constant weight codes are also error-detecting codes. 
The advantage of a code with a permanent weight is the 

quick and efficient finding of errors while processing infor-
mation. This code consists of k 1’s and n-k 0’s where n is the 
length of the code combination. Identifying the error is the 
discrepancy between the number of n-k 0’s and the number 
of 1’s k in the code combination [12]. Study [13] assessed 
the probability of an undetectable error in binary (n, 26, m) 
non-linear codes with a permanent weight using a binary 
symmetrical channel. However, there remain unresolved 
issues related to the comparative estimation of indivisible 
error-detecting codes with other types of coding.

Among the well-known anti-interference codes that de-
tect errors, the Fibonacci code can be also used effectively in 
practice. Its peculiarity is that the code consists of numbers 
generated by the Fibonaccian numbering system [14‒16]. 
Fibonacci codes are the indivisible noise-resistant codes, 
with a natural redundancy in their structure, and are able to 
detect asymmetric errors not only in data channels but also 
in synthesized digital devices that operate on their basis. 
For example, such as fast-acting Fibonacci counters, fractal 
deciphers, ciphers. Paper [17] examines the informational 
and arithmetic frameworks for the construction of Fibonac-
ci’s p-codes and the “golden” p-proportion codes, as well as 
the synthesis of digital devices based on them. Work [17] 
considers the meta-Fibonacci number system based on the 
meta-Fibonacci sequences; it is a generalization of the Zeck-
endorf number system.

Study [19] reports the estimate of an error detecting 
capability of the Fibonacci code in a closed-form expression 
but this estimate is generalized and does not use probabilis-
tic code characteristics or comparative estimates with other 
types of coding. Typically, transitions are used from one 
form of a Fibonacci code representation, minimal, to another, 
maximal, and back, requiring the operations of sweep and 
convolution. This complicates the process of decoding the 
Fibonacci numbers and increases its time, so the Fibonacci 
code in a closed-form expression was selected to this end.

The Fibonacci code in a closed-form expression is close to 
a standard binary code and, therefore, is the easiest one, in 
terms of structure, among the codes derived from noise-re-
sistant number systems. The Fibonacci code is capable of 
detecting errors in both processing and transfer of informa-
tion, which means that it can execute end-to-end control in 
telecommunication systems [19, 20]. However, these errors’ 
type is 0→1. Therefore, the Fibonacci code in a closed-form 
expression is most effective in asymmetric channels for 
processing and transmitting information, which is quite 
common in practice. In addition, if necessary, this asymme-
try can be easily compensated for by the introduction of the 
simplest interference-resistant codes with artificial reser-
vations, thereby obtaining a cumulative effect of improved 
interference resistance.

Paper [21] reports a method for evaluating indivisible 
error-detecting codes. It shows that a given estimate can 
be applied to any indivisible codes. However, there remain 
unresolved issues related to the estimation of the above error 
detecting codes, which were not previously more thoroughly 
researched using an average probability method. Thus, it is 
difficult to use different types of coding in telecommunica-
tion systems and compare them with other types of coding. 
The option of overcoming the relevant difficulties may be to 
use the average probability method to evaluate codes, which 
makes it possible to objectively investigate and compare 
codes, thereby rendering relevance to appropriate research. 
The above suggests that it is expedient to undertake a study 
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into the estimation of indivisible error-detecting codes based 
on an average probability method. Such an assessment is 
necessary and relevant in order to compare the error detect-
ing capability of indivisible error-detecting codes and their 
effective practical application considering the advent of new 
coding methods.

3. The aim and objectives of the study

The aim of this study is to evaluate the indivisible er-
ror-detecting codes based on an average probability method 
using the examples of the Fibonacci code, a parity check 
code, and a permanent-weight code.

This would provide an opportunity to improve the effi-
ciency of data processing in information and computing sys-
tems and their further transmission in telecommunication 
systems. In practice, the probabilities of errors in the applied 
indivisible codes make it possible to assess the loss and dis-
tortion of information, thereby enabling them to be compen-
sated, for example, by reprocessing and transmitting it, or to 
estimate the material costs of obtaining the unreliability of 
information. In addition, by comparing interference resis-
tance, one can choose a more effective indivisible code based 
on this parameter.

To accomplish the aim, the following tasks have been set:
‒ to assess the anti-interference in processing and trans-

mitting information by the Fibonacci code in a closed-form 
expression based on an average probability method;  

‒ to assess the anti-interference in processing and trans-
mitting information by a parity check code and by an con-
stant weight code; to perform a comparative assessment of 
the interference resistance of the specified indivisible codes.

This involves assessing the probability of proper transi-
tions of code combinations C, the probability of undetectable 
erroneous transitions of code combinations V, the probabil-
ity of erroneous transitions of code combinations that are 
detected Z.

4. Materials and methods to study the Fibonacci code

The Fibonacci number system makes it possible to gener-
ate a Fibonacci code in a closed-form expression; it consists 
of Fibonacci numbers whose weights are a sequence of the 
Fibonacci numbers 1, 1, 2, 3, 5, 8, ..., Fn. Each sequence of 
numbers is determined from the following equation [14‒16].

1 2.n n nF F F− −= +     (1)

It follows from equation (1) that each subsequent element 
of the Fibonacci series is equal to the sum of its two pre-
ceding elements. The quantitative value of the Fibonaccian 
numbers is set by a numbering function whose weights are 
the Fibonacci numbers [14‒16]:

1 1 1 1,n n n n i iN a F a F a F a F− −= + + + + +   (2)

where ai∈{0 1} is the binary digit of the i-th bit in the po-
sitional representation of a number; n is the length of the 
code; Fi is the weight of the i-th bit, which is equal to the i-th 
Fibonacci number. The abbreviated form of equation (1) is 
written in the following form given in [14‒16]:

1 1.a n n iN a a a a−=     (3)

In equation (2), there is no zero low-order bit of the 
function. The zero bit of the low order of the combination is 
always 0, with the code combination weight ratio equal to 1. 
The zero low-order bit of the code combination is not record-
ed and does not affect the result of the summation. Thus, this 
representation defines the Fibonacci code in a closed-form 
expression. For example, the numbers 25, 54, and 33 are rep-
resented by the Fibonacci code in a closed-form expression in 
the form given in Table 1.

Table	1

Fibonacci	code	in	a	closed-form	expression

Bit number 8 7 6 5 4 3 2 1

Bit weight 21 13 8 5 3 3 2 1

N=25 0 1 0 0 0 1 0 1

N=54 1 0 1 0 1 0 1 0

N=33 0 1 0 1 0 1 0 1

The range of Fibonaccian numbers is determined from 
the equation given in [14‒16]:

1,n nP F F −= +      (4)

where Fn is the weight of the n-th bit of a Fibonacci number; 
Fn-1 is the weight of the n-1 bit of a Fibonacci number. 

Using two binary numbers, the range of Fibonacci num-
bers equals P2=1+1=2, for P3=2+3=5, for P4=3+5=8. 

Fibonacci codes prohibit having two unities side by side, 
which is a sign of an error. If there are 3 neighboring unities 
in the code combination, the average 1 can be corrected by 
inverting it to zero, resulting in a correction of the error 
in the error detecting code. Thus, the Fibonacci code in a 
closed-form expression is able not only to detect errors but 
also to correct some of them.

5. A mathematical model of the average probability 
method to evaluate the indivisible error-detecting codes

The noise immunity estimation of indivisible codes for a 
binary symmetrical channel without memory was proposed 
in work [21]. 

Fig. 1 shows the transformation graph of the allowable 
code combinations into the class of proper code combina-
tions C, the class of prohibited code combinations Z, and the 
class of allowable code combinations V.

Underlying the mathematical model is a condition that 
any of the M allowable code combinations, transmitted along 
a binary symmetrical channel without memory, out of the 
total number of N>M code combinations, can move to the 
following classes of code combinations, such as:

1) a class of proper code combinations C; 
2) a class of Z=N–M prohibited code combinations;
3) a class of V=M–1 allowable code combinations with 

undetectable errors, where M is the number of allowable code 
combinations; N is the total number of code combinations.

The probability of a proper transition is determined from 
the equation given in [21]:



Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 6/9 ( 108 ) 2020

28

1

,
M

i
i i

i

C P p
=

= ∑    (5)

where Pi is the probability that an information source gener-
ates the i-th code combination; i

ip  is the probability that the 
i-th code combination is properly transferred into the i-th 
code combination. 

Fig.	1.	Transformations	of	the	allowable	code	combinations	
into	the	class	of	proper	code	combinations	C,	the	class	of	

prohibited	code	combinations	Z,	and	the	class	of	allowable	
code	combinations	V

The probability of undetectable erroneous transitions is 
determined from the equation given in [21]:

1

,
M

u
i i

i

V P p
=

= ∑    (6)

where u
ip  is the possibility that the i-th code combination 

is erroneously transferred into a class of code combinations 
that are not detected. 

The probability of an erroneous transition is determined 
from the equation given in [21]:

,
1,

,
M

u u
i i j

j j i

p p
= ≠

= ∑    (7)

where ,
u
i jp  is the probability that the i-th code combination 

is erroneously transferred into the j-th allowable code com-
bination.

The probability of the error detected is determined from 
the equation given in [21]:

1

,
M

d
i i

j

Z P p
=

= ∑    (8)

where d
ip  is the possibility that the i-th code combination is 

erroneously transferred into the class of code combinations 
that are detected.

The probability of an erroneous transition is determined 
from the equation given in [21]:

,
1

,
N

d d
i i j

j M

p p
= +

= ∑    (9)

where ,
d
i jp  is the possibility that the i-th code combination is 

erroneously transferred into the j-th prohibited combination. 
The probability of code word transitions is determined 

from the equation given in [21]:

1,C V Z+ + =     (10)

where C, V and Z are the probabilities that code combina-
tions are transferred into the proper, allowable, and forbid-
den ones. 

The basic characteristic of a code is the magnitude 
of the probability that the allowable code combination is 
transferred into another allowable one (the probability of an 
undetectable error) [21].

1 .errP V Z C= = − −    (11)

Therefore, in order to assess the noise immunity of the 
Fibonacci code in a closed-form expression, we shall analyze 
the proper transmission of data, detected, and undetectable 
errors. The inputs for our analysis are the probability of 0 
moving to 0 (p00), and 1 ‒ to 1 (p11). The probability of an 
erroneous transition of 0 to 1, and 1 to 0, is determined from 
the following ratios: p01=1–p00, p10=1–p11.

6. Modeling results 

6. 1. Estimating the noise immunity in processing and 
transfer of information by the Fibonacci code in a closed-
form expression

To achieve the above goal, one needs to determine the 
number of the allowable and prohibited code combinations 
in the codes under consideration; to determine the probabil-
ity of erroneous transitions 0→1 and 1→0 in code combina-
tions, as well as the probabilities of their appearance at the 
input to information processing devices or a communication 
channel.  

Table 2 gives an example of the allowable code combi-
nations M in the Fibonacci code in a closed-form expression 
with weights 1, 2, 3, 5, 8, for n=5. 

Table	2

Fibonacci	code	in	a	closed-form	expression	of	the	number	
with	weights	1,	2,	3,	5,	8

No.
Fibonacci code

8 5 3 2 1

0 0 0 0 0 0

1 0 0 0 0 1

2 0 0 0 1 0

3 0 0 1 0 0

4 0 0 1 0 1

5 0 1 0 0 0

6 0 1 0 0 1

7 0 1 0 1 0

8 1 0 0 0 0

9 1 0 0 0 1

10 1 0 0 1 0

11 1 0 1 0 0

12 1 0 1 0 1

Table 3 gives the prohibited code combinations F=N-M 
in the Fibonacci code in a closed-form expression with 
weights 1, 2, 3, 5, 8 for n= 5.
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Table	3

Prohibited	code	combinations	in	the	Fibonacci	code	in	a	
closed-form	expression

No. Prohibited code combinations

0 0 0 0 1 1

1 0 0 1 1 0

2 0 0 1 1 1

3 0 1 0 1 1

4 0 1 1 0 0

5 0 1 1 0 1

6 0 1 1 1 0

7 0 1 1 1 1

8 1 0 0 1 1

9 1 0 1 1 0

10 1 0 1 1 1

11 1 1 0 0 0

12 1 1 0 0 1

13 1 1 0 1 0

14 1 1 0 1 1

15 1 1 1 0 0

16 1 1 1 0 1

17 1 1 1 1 0

18 1 1 1 1 1

Table 4 gives the number of the allowable code combina-
tions in the Fibonacci code in a closed-form expression for 
n=3,...,32.

Table	4

The	number	of	allowable	code	combinations	M	in	the	
Fibonacci	code	in	a	closed-form	expression	for	n=3,...,32

n М n M n M

3 5 13 610 23 1.214×104

4 8 14 986 24 1.964×105

5 13 15 1.596×103 25 5.142×105

6 21 16 2.584×103 26 8.32×105

7 34 17 4.181×103 27 1.346×106

8 55 18 6.765×103 28 2.178×106

9 89 19 1.095×104 29 5.703×106

10 143 20 1.771×104 30 9.227×106

11 232 21 4.637×104 31 1.493×107

12 377 22 7.503×104 32 2.416×107

Table 5 gives the quantity of numbers of the prohibited 
code combinations F in the Fibonacci code in a closed-form 
expression for n=3, ..., 32.

The effectiveness of using the Fibonacci code in a closed-
form expression is shown on the basis of the probabilities of 
errors taken in the range of 103–109, which are most used in 
practice. 

Using expression (5), we have derived a probability 
dependence of the proper transmission of data C of the Fi-
bonacci code in a closed-form expression. Fig. 2 shows the 
graph of the probability dependence of the proper transmis-

sion of data by the Fibonacci code in a closed-form expres-
sion on log10(p10), at n=9, for:

1) p10=3×10-4–3×10-9; 
2) p10=1.7×10-4–1.7×10-8.

Table	5

The	numbers	of	the	prohibited	code	combinations	in	the	
Fibonacci	code	in	a	closed-form	expression

n F n F n F

3 3 13 7.582×103 23 8.314×106

4 8 14 1.54×104 24 1.666×107

5 19 15 3.117×104 25 3.336×107

6 43 16 6.295×104 26 6.679×107

7 94 17 1.269×105 27 1.337×108

8 201 18 2.554×105 28 2.676×108

9 423 19 5.133×105 29 5.355×108

10 881 20 1.031×106 30 1.072×109

11 1.816×103 21 2.068×106 31 2.144×109

12 3.719×103 22 4.148×106 32 4.289×109

Fig.	2.	Probability	of	the	proper	data	transmission	of	the	
Fibonacci	code	in	a	closed-form	expression:		

1	–	p10=3×104–3×109;	2	–	p10=1.7×104–1.7×108

It follows from Fig. 2 that as the probability (p10) decreases, 
the probability of proper data transmission C of the Fibonacci 
code in a closed-form expression increases. It also follows from 
Fig. 2 that if one uses the probabilities p10=1.7×104–1.7×108, the 
probability of proper data transmission C of the Fibonacci code 
in a closed-form expression is higher than when using probabil-
ities in the range of p10=3×104–3×109.

Using expression (6), we derived a probability dependence 
of an undetectable error V of the Fibonacci code in a closed-
form expression on log10(p01). Fig. 3 shows the graph of a prob-
ability dependence of an undetectable error of the Fibonacci 
code in a closed-form expression on log10(p01), at n=9, for:

1) p01=3×103–3×108; 
2) p01=1.7×103–1.7×107.
It follows from Fig. 3 that as the probability value (p01) 

decreases, the probability of an undetectable error V of the 
Fibonacci code in a closed-form expression decreases. It 
also follows from Fig. 3 that when one uses the probabilities 
p01=3×10-3–3×10-8, the probability of an undetectable error 
V of the Fibonacci code in a closed-form expression is greater 
than that when using the probabilities of data transfer in the 
range of p01=1.7×103–1.7×10- 7.
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Fig.	3.	Probability	of	an	undetectable	error	of	the	Fibonacci	
code	in	a	closed-form	expression:	1	–	p01=3×103–3×108;		

2	–	p01=1.7×103–1.7×107

Using expression (8), we derived a probability dependence 
of the detectable error Z of the Fibonacci code in a closed-form 
expression on log10(p10). Fig. 4 shows the graph of a probabili-
ty dependence of the detectable error of the Fibonacci code in 
a closed-form expression on log10(p10), at n=9, for:

1) p10=3×10-4–3×10-9;
2) p10=1.7×10-4–1.7×10-8.

Fig.	4.	Probability	of	a	detected	error	of	the	Fibonacci	code	
in	a	closed-form	expression:	1	–	p10=3×10-4–3×10-9;		

2	–	p10=1.7×10-4–1.7×10-8

It follows from Fig. 4 that as the probability value (p10) 
decreases, the probability of a detected error of the Fibonacci 
code in a closed-form expression decreases. It also follows from 
Fig. 3 that when one uses the probabilities p10=3×10-4–3×10-9, 
the probability of a detected error in the Fibonacci code in a 
closed-form expression is higher than that when using the prob-
abilities of data transfer in the range of p10=1.7×10-4–1.7×10-8.

Using expression (5), we derived a probability depen-
dence of the proper data transmission C of the Fibonacci 
code in a closed-form expression on the code bit size n.

Fig. 5 shows the graph of a probability dependence of the 
proper transmission C of the Fibonacci code in a closed-form 
expression on the code bit size n for:

1) p10=3×10-6, p01=3×10-5;
2) p10=1.7×10-7, p01=1.7×10-6.

Fig.	5.	Probability	of	the	proper	transfer	of	the	Fibonacci	code	
in	a	closed-form	expression:	1	–	p10=3×10-6,	p01=3×10-5;		

2	–	p10=1.7×10-7,	p01=1.7×10-6

It follows from Fig. 5 that as the code bit size n increases, 
the number of bits in which an error is possible increases. 
Thus, the probability of proper transfer decreases with an 
increase in the code bit size n. It also follows from Fig. 5 
that when using probabilities p10=1.7×10-7, p01=1.7×10-6, 
the probability of proper data transfer C is higher than that 
when using probabilities p10=3×10-6, p01=3×10-5.

Using expression (6), we derived a probability depen-
dence of an undetectable error V of the Fibonacci code in a 
closed-form expression on the code bit size n.

Fig. 6 shows the graph of a probability dependence of an 
undetectable error of the Fibonacci code in a closed-form 
expression on the code bit size n for:

1) p10=3×10-6, p01=3×10-5;
2) p10=1.7×10-7, p01=1.7×10-6.

Fig.	6.	Probability	of	an	undetectable	error	of	the	Fibonacci	
code	in	a	closed-form	expression:	1	–	p10=3×10-6,	p01=3×10-5;	

	2	–	p10=1.7×10-7,	p01=1.7×10-6

It follows from Fig. 6 that the probability of an undetect-
able error of the Fibonacci code in a closed-form expression 
increases as the code bit size n increases. It also follows 
from Fig. 6 that if one uses the probabilities p10=1.7×10-7, 
p01=1.7×10-6, the probability of an undetected error V of the 
Fibonacci code in a closed-form expression is lower than that 
when using probabilities p10=3×10-6, p01=3×10-5.
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Using expression (8), we derived a probability depen-
dence of the detected error of the Fibonacci code in a closed-
form expression on the code bit size n.

Fig. 7 shows the graph of a probability dependence of the 
detected error of the Fibonacci code in a closed-form expres-
sion on the code bit size n for:

1) p10=3×10-6, p01=3×10-5;
2) p10=1.7×10-7, p01=1.7×10-6.

Fig.	7.	Probability	of	a	detected	error	of	the	Fibonacci	code	
in	a	closed-form	expression:	1	–	p10=3×10-6,	p01=3×10-5;		

2	–	p10=1.7×10-7,	p01=1.7×10-6

It follows from Fig. 7 that the probability of a detected 
error of the Fibonacci code in a closed-form expression 
increases as the code bit size n increases. It also follows 
from Fig. 7 that if one uses the probabilities p10=1.7×10-7, 
p01=1.7×10-6, a detectable error of the Fibonacci code in a 
closed-form expression is less than that when using proba-
bilities p10=3×10-6, p01=3×10-5.

6. 2. Estimating the noise immunity in processing and 
transfer of information for the indivisible error-detecting 
codes

Based on an average probability method, we estimated 
the probability of an undetectable error for the Fibonacci 
code in a closed-form expression, for a parity check code, and 
for a constant weight code. 

Fig. 8 shows the graph of a probability dependence of an 
undetectable error for:

1) the Fibonacci code in a closed-form expression, for 
p10=3×10-4–3×10-9, p10=1.7×10-4–1.7×10-8; 

2) a parity check code, for p10=3×10-4–3×10-9, 
p10=1.7×10-4–1.7×10-8; 

3) a constant weight code at n=11, k=7, for  
p10=3×10-4–3×10-9, p10=1.7×10-4–1.7×10-8 on log10(p10).

It follows from Fig. 8 that the most effective is the con-
stant weight code, whose probability of an undetectable 
error is V=1.9×10-15, at p10=3×10- 9. Closer approximate to it 
is the parity check code, whose probability of an undetect-
able error is V=7.7×10-15, at p10=3×10-9. The probability of 
an undetectable error of the Fibonacci code in a closed-form 
expression is V=5×10-7, at p10=3×10-9.

The above study makes it possible, for each range of 
values (p10) and (p01), to calculate the probability of the 
proper data transmission C, as well as the probability of 
an undetectable error V, and a detectable error Z. This as-
sessment of codes based on an average probability method 
allows us to assess the reliability and effectiveness of the 

indivisible error detecting codes, such as the Fibonacci code 
in a closed-form expression, a parity check code, a constant 
weight code, which can be effectively applied in telecommu-
nication systems.

Fig.	8.	Probability	of	an	undetectable	error	of	the	Fibonacci	
code	in	a	closed-form	expression,		

for	1	‒	p10=3×10-4–3×10-9,	2	–	p10=1.7×10-4–1.7×10-8;	
	a	parity	check	code,	for	3 ‒	p10=3×10-4–3×10-9,		

4	–	p10=1.7×10-	4–1.7×10-8;	a	constant	weight	code,		
for	5	‒	p10=3×10-4–3×10-9,	6	–	p10=1.7×10-4–1.7×10-8

7. Discussion of results of studying the indivisible error-
detecting codes based on an average probability method

For the Fibonacci code in a closed-form expression, with 
weights 1, 2, 3, 5, 8, for n=5, the number of the allowable 
code combinations was M=13, the number of the prohibited 
code combinations was F=19. The quantity of the numbers 
of the allowable code combinations of the Fibonacci code 
in a closed-form expression in the range of n=3,...,32 was  
M=5–2.416×107. The number of the prohibited code combina-
tions of the Fibonacci code in a closed-form expression for the 
range of n=3,...,32 was F=3–4.289×109. We have determined 
the probability of transfers of the Fibonacci code combina-
tions to the classes of proper C and prohibited Z ones, for the 
ranges of p10=3×10-4–3×10-9 and p10=1.7×10- 4–1.7×10-8, and 
for the allowable ones V, for the ranges of p01=3×10-3–3×10-8 
and p01=1.7×10-3–1.7×10-7. 

Our assessment of the error-detecting capability of the 
indivisible error-detecting codes based on the average proba-
bility method makes it possible to evaluate codes that can be 
effectively applied in different telecommunications and digital 
systems in the future. It follows from our assessment that the 
most effective code to use is the constant weight code as this 
type of coding demonstrates the lowest level of an undetect-
able error, V=1.9×10-15, at p10=3×10- 9, and ensures the nec-
essary level of reliability and error-reducing data capability.

For indivisible codes of any type offered in this paper, an 
assessment of the error-detecting capability of the indivisible 
error-detecting codes based on the average probability meth-
od has been applied. The results of applying the estimation of 
the indivisible error-detecting codes based on the averaged 
probability method have been illustrated with specific ex-
amples with the transition probabilities 0→1 and 1→0. In 
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contrast to the assessment of the reliability of data transmis-
sion using the Hamming metric, this method is more general 
and more convenient for the indivisible error-detecting codes. 
The estimation of the error-detecting ability of indivisible er-
ror-detecting codes based on the averaged probability method 
allows estimating indivisible codes with any code distance, 
starting from d=1, which cannot be done using the Hamming 
metric [22]. At the same time, using the Hamming metric 
to assess the error-detecting ability of codes, it is possible to 
detect not all types of errors but only some of them, while 
the use of the averaged probability method makes it possible 
to more efficiently and accurately evaluate the indivisible 
error-detecting codes. In addition, the method proposed in 
papers [23, 24] to evaluate the error detecting capability of bi-
nomial coefficient-based codes is quite complex and produces 
worse results in terms of error detection accuracy than the av-
erage probability method, which demonstrates the simplicity, 
accuracy, and commonality of evaluating the indivisible codes 
of error detection. In the long term, the method of evaluating 
the indivisible codes based on average probability may be im-
proved for divisible linear block codes.

The method of assessing indivisible codes based on aver-
age probability makes it possible to effectively evaluate and 
compare codes relative to each other in terms of error-de-
tecting capability. In comparison with other methods for 
evaluating codes, the method for evaluating indivisible codes 
based on the averaged probability makes it possible to obtain 
the averaged probability of error on the set of initial proba-
bilities of messages and the probabilities of transitions 0→1 
and 1→0 when transmitting messages. The advantage of the 
averaged probability method is the simplicity of evaluating 
the error-detecting ability of codes and good reliability of 
the estimate, close to reality. In addition, a given method is 
universal for indivisible codes.

The disadvantage of the method of evaluating indivisible 
codes based on average probability is the difficulty of its 
application and constraints for linear block codes. In addi-
tion, the disadvantage of a given method compared to others 

is its increased complexity and the need to first know the 
probabilities of transitions 0→1 and 1→0, and, for greater 
accuracy, the probability of code combinations at the input 
to communication channels.

In the future, the method of evaluating indivisible codes 
based on average probability can be modified and effectively 
applied to divisible codes. It is also possible to use this as-
sessment method for multi-digit codes.

8. Conclusions 

1. Indivisible error-detecting codes have been evaluated 
based on the average probability method for the Fibonacci 
code in a closed-form expression. Detection of errors based 
on the average probability method makes it possible to eval-
uate indivisible codes with any code distance, starting from 
the distance of d=1.

2. We have performed a comparative assessment of the 
probability of an undetectable error for the Fibonacci code in 
a closed-form expression, a parity check code, and a perma-
nent-weight code, by using an average probability method. 
Applying the average probability method makes it possible 
to estimate the probability of errors, both in processing and 
in the transmission of indivisible codes, as well as compare 
them based on this indicator.
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