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Abstract. The suspended ferromagnetic particles subjected to the gradient and

uniform magnetic fields experience both the translational force generated by the

field gradient and the rotational torque generated by the fields strengths. Although

the uniform field does not contribute to the force, it nevertheless influences the

translational motion of these particles. This occurs because the translational force

depends on the direction of the particle magnetization, which in turn depends on the

fields strengths. To study this influence, a minimal set of equations describing the

coupled translational and rotational motions of nanosized ferromagnetic particles is

introduced and solved in the low Reynolds number approximation. Trajectory analysis

reveals that, depending on the initial positions of nanoparticles, there exist four regimes

of their directed transport. The intervals of initial positions that correspond to different

dynamical regimes are determined, their dependence on the uniform magnetic field is

established, and strong impact of this field on the directed transport is demonstrated.

The ability and efficiency of the uniform magnetic field to control the separation of

suspended ferromagnetic nanoparticles is also discussed.
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1. Introduction

Ferromagnetic single-domain nanoparticles distributed in a viscous liquid have

interesting physical properties and promising biomedical applications, such as magnetic

fluid hyperthermia, magnetic particle imaging, drug delivery and many others (see, e.g.,

recent reviews [1, 2] and references therein). Because these applications often utilize

the properties of the magnetic and mechanical dynamics of such nanoparticles, it is

important to correctly introduce their corresponding equations of motion. One of the

most reliable methods proposed to derive these equations is based on the concept of the

total particle momentum, which includes the angular and spin momentum parts. Within

this approach, the coupled equations of motion for the particle magnetization and the

particle angular velocity have been derived and analyzed [3, 4, 5, 6], and a number of

nontrivial effects in these systems controlled by the magnetocrystalline anisotropy have

been predicted and studied [7, 8, 9].

At the same time, when the anisotropy energy is large compared to other energies,

the magnetization vector can be considered as ‘frozen’ into the particle body [10, 11].

The main advantage of this so-called rigid dipole model is that the particle dynamics

completely describes the magnetization dynamics and, as a consequence, the magnetic

properties of such systems. This approximation was used, e.g., to investigate the

role of the magnetic dipolar interaction and thermal fluctuations in energy dissipation

[12, 13, 14], formation of structures due to dipolar interaction [15, 16, 17], deterministic

and stochastic rotation of ferromagnetic nanoparticles [18, 19, 20] and many other

phenomena.

Recently, using this model, we theoretically and numerically studied the effect of

directed transport (drift) of ferromagnetic nanoparticles induced by the Magnus force

[21, 22, 23]. It has been shown that nanoparticles performing in a viscous liquid

synchronized translational oscillations (induced by the oscillating driving force) and

nonuniform rotations (induced by the nonuniformly rotating magnetic field) drift in a

certain direction with a constant average velocity. Since the magnitude and direction

of the drift velocity can be easily controlled and tuned by the external parameters,

this effect could be used, e.g., in drug delivery and separation applications. But the

ratio of the drift velocity to the particle velocity caused by the non-oscillating driving

force is proportional to the rotational Reynolds number, which for nanosized particles

is sufficiently small. As a consequence, the velocity of nanoparticles subjected to the

non-oscillating driving force is usually much larger then the corresponding drift velocity.

One of the most commonly used methods to generate the driving force acting on

ferromagnetic nanoparticles is the gradient magnetic field. Although the influence of

this field on nanoparticles is well studied in the context of magnetic separation (see,

e.g., [24, 25]), a complete analysis of their directed transport under the application of

the gradient and uniform magnetic fields, to the best of our knowledge, has not been

performed yet. Because the uniform field strongly affects the magnetization orientation,

it is expected that this field can be used to control and manipulate the directed
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transport of suspended ferromagnetic nanoparticles induced by the gradient magnetic

field. Therefore, in this paper, we aim to study the dynamics of such nanoparticles with

a special focus on their transport properties and possible applications.

2. Motion equations

We study the directed transport of a spherical ferromagnetic nanoparticle suspended in

a viscous liquid that is characterized by the radius a and magnetization M = M(t),

where |M| = M = const. The particle radius is chosen to be so small that the single-

domain state is realized and, at the same time, so large that the thermal fluctuations

can be neglected (these conditions hold for a variety of materials, see, e.g., [26] and

below). If, in addition, the anisotropy magnetic field is strong enough, the particle

can be associated with a rigid magnetic dipole. In this approximation the particle

magnetization is directed along the particle easy axis and hence satisfies the kinematic

differential equation

Ṁ = ω ×M, (1)

where ω = ω(t) is the particle angular velocity, the sign × denotes the vector product,

and the overdot denotes the derivative with respect to the time t. It is assumed also that

the radius-vector of the particle center, R = R(t), changes so slowly that the derivative

Ṁ can be calculated at a fixed R.

We consider the situation when a nanoparticle is under influence of both the uniform

H⊥ and gradient Hg magnetic fields:

H⊥ = H⊥ey, Hg = gRxex. (2)

Here, H⊥(≥ 0) is the uniform magnetic field strength, g (> 0) is the gradient of the

magnetic field Hg, Rx is the x component of R, and ex, ey and ez are the unit vectors

along the corresponding axes of the Cartesian coordinate system xyz. It should also be

noted that the uniform magnetic field H‖ = H‖ex together with the gradient magnetic

field Hg act as the shifted gradient magnetic field g(Rx +H‖/g)ex, i.e., H‖ shifts only

the point where Hg = 0. Therefore, without loss of generality, at this stage we can

choose H‖ = 0.

To describe the magnetization dynamics in these fields, we assume that the

magnetization vector M lies in the xy plane:

M = M(cosϕ ex + sinϕ ey), (3)

where ϕ = ϕ(t) is the azimuthal angle of M. As it follows from the kinematic equation,

the connection between this angle and the particle angular velocity is given by the usual

relation

ϕ̇ = ωz. (4)

Let us now write the equations describing the translational and rotational dynamics

of a suspended particle. Because of its nanoscale size, the inertial effects can safely be
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neglected (see below). Therefore, keeping only the driving and friction terms, these

equations can be written as the force balance equation, fd + ff = 0, and the torque

balance equation, td + tf = 0, respectively. Here, fd is the driving force generated by

the gradient magnetic field, ff is the friction force, td is the driving torque exerted by

the total magnetic field H⊥ +Hg, and tf is the frictional torque. Taking into account

that the driving force and torque are defined as fd = V (M · ∂/∂R)Hg (V = 4πa3/3 is

the particle volume, the dot denotes the scalar product) and td = VM × (H⊥ + Hg)

and calculating them using (2) and (3), the above equations can be rewritten as

MV g cosϕ ex + ff = 0 (5)

and

MV (H⊥ cosϕ− gRx sinϕ) ez + tf = 0. (6)

Since explicit expressions for ff and tf are in general not known, below we consider

only the case of small Reynolds numbers (for nanoparticles this condition is not too

restrictive).

2.1. Low Reynolds number approximation

The translational and rotational Reynolds numbers defined as Re = 2ρa|v|/η and

Reω = ρa2|ω|/η, respectively, play the most important role in determining ff and tf .

Here, ρ is the liquid density, v = v(t) is the particle translational velocity and η is

the dynamic viscosity of liquid. If these parameters are chosen so that Re ≪ 1 and

Reω ≪ 1, then the liquid flow induced by a moving particle is laminar and, according

to [27], ff = −6πηav and tf = −8πηa3ω. Using the last formula, from (6) we find

ω = ωzez with

ωz =
M

6η
(H⊥ cosϕ− gRx sinϕ). (7)

Then, substituting (7) into (4), one obtains the following equation for the azimuthal

angle of the magnetization vector:

ϕ̇− ω⊥ cosϕ+ ωgrx sinϕ = 0, (8)

where rx = Rx/a is the dimensionless x component of the particle position and

ω⊥ =
MH⊥

6η
, ωg =

Mga

6η
(9)

are the characteristic frequencies arising from the uniform and gradient magnetic fields,

respectively. Without loss of generality, we assume that the initial azimuthal angle

ϕ(0) = ϕ0 satisfies the condition ϕ0 ∈ [0, π].

Equation (5) with ff given above shows that the particle velocity v has only the x

component

vx = v0 cosϕ, (10)
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where

v0 =
2Mga2

9η
=

4

3
ωga (11)

is the particle characteristic velocity. Using (10) and (11), one gets

rx = rx0 +
4

3
ωg

∫ t

0

cosϕ(t′)dt′ (12)

with rx0 = rx(0) being the initial particle position.

The set of equations (8) and (12) together with the initial values ϕ0 and rx0
completely describes the rotational and translational dynamics of such nanoparticles.

According to (12), equation (8) is integro-differential (this is because the strength of the

gradient magnetic field acting on particles changes during their translational motion).

Rewriting it in the form

ϕ̇− ω⊥ cosϕ

sinϕ
= −ωgrx (13)

and taking the time derivative of both sides, equation (13) can be reduced to the

autonomous second-order differential equation

ϕ̈ sinϕ− ϕ̇2 cosϕ + ω⊥ϕ̇+
4

3
ω2

g sin
2 ϕ cosϕ = 0. (14)

As (8) shows, the solution of (14) must satisfy the initial conditions ϕ(0) = ϕ0 and

ϕ̇(0) = ω⊥ cosϕ0 − ωgrx0 sinϕ0. (15)

3. Nanoparticle dynamics

Because the analysis of the nanoparticle dynamics in the cases of absence and presence

of the uniform magnetic field H⊥ is different, we consider these cases separately.

3.1. Nanoparticle dynamics at H⊥ = 0

Since in this case ω⊥ = 0, the second-order nonlinear differential equation (14) can be

reduced to the first-order linear differential equation for q = ϕ̇2. Indeed, considering q

as a function of ϕ, i.e., q = q(ϕ), and taking into account that q′ϕ = 2ϕ̈ (q′ϕ = dq/dϕ),

(14) reduces to

q′ϕ sinϕ− 2q cosϕ+
8

3
ω2

g sin
2 ϕ cosϕ = 0 (16)

According to (15), the solution of this equation must satisfy the condition q(ϕ0) = q0,

where

q0 = ω2

gr
2

x0 sin
2 ϕ0. (17)

The general solution of (16) is given as follows (see, e.g., formula (13.1.4) in [28]):

q = C sin2 ϕ−
4

3
ω2

g sin
2 ϕ ln sin2 ϕ, (18)
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where C is the integration constant. Determining this constant from the condition (17),

C = ω2

gr
2

x0 +
4

3
ω2

g ln sin
2 ϕ0, (19)

and using (11), the solution (18) can be rewritten in the form

q = ω2

g

(

r2x0 −
4

3
ln

sin2 ϕ

sin2 ϕ0

)

sin2 ϕ. (20)

From this and equation (8), which at H⊥ = 0 yields q = ϕ̇2 = ω2

gr
2

x sin
2 ϕ, one obtains

the relation

r2x = r2x0 −
4

3
ln

sin2 ϕ

sin2 ϕ0

(21)

that plays an important role in the further analysis of the nanoparticle dynamics.

We begin our analysis by noting that the initial angular velocity ϕ̇(0) =

−ωgrx0 sinϕ0 depends on the initial particle position rx0. This fact, together with (8),

which according to (21) can be represented as

ϕ̇ = −sgn (rx)ωg

(

r2x0 −
4

3
ln

sin2 ϕ

sin2 ϕ0

)1/2

sinϕ (22)

[sgn (x) = ±1 if x ≷ 0], indicates that the linear particle velocity vx = v0 cosϕ at t 6= 0

also depends on rx0 (recall in this connection that the initial velocity vx(0) = v0 cosϕ0 is

the same for all rx0). Assuming for definiteness that ϕ0 ∈ (0, π/2), from (22) it follows

that the azimuthal angle ϕ monotonically decreases with time from ϕ0 to 0 (and so vx
monotonically increases from v0 cosϕ0 to v0) if rx0 ≥ 0. In other words, all particles

with rx0 ≥ 0 move to the right with velocities approaching v0 at long times. Moreover,

the larger the initial particle position is, the faster the particle velocity approaches the

limiting value v0. For the purpose of classification, we call the nanoparticle dynamics

at rx0 ≥ 0 as the first dynamical regime.

The second dynamical regime occurs for nanoparticles with rx0 ∈ (−l, 0), where

l =

(

4

3
ln

1

sin2 ϕ0

)1/2

. (23)

In this case all particles also move to the right. However, in contrast to the previous case,

the azimuthal angle ϕ initially increases from ϕ0 to some ϕm < π/2 (until the position

rx = 0 is reached) and then monotonically decreases to 0 as t → ∞. In accordance with

this, the particle velocity initially decreases from v0 cosϕ0 to v0 cosϕm and then grows

to v0.

The nanoparticle dynamics at rx0 = −l corresponds to the third dynamical regime,

which can be considered as a limiting case of the second one. As before, the particle

initially moves to the right, but after reaching the state with rx = 0 and ϕm = π/2 its

motion is stopped. We note, however, that this state is unstable: due to fluctuations,

the particle leaves the vicinity of this point and moves either to the left or to the right.

Finally, the fourth dynamical regime is realized if rx0 < −l. In this case the

azimuthal angle ϕ monotonically increases with time from ϕ0 to π, and each particle
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moves to the right only on the time interval (0, ts), which depends on rx0. At t = ts
the particle stops [vx(ts) = 0, i.e., ϕ(ts) = π/2] at the point rx(ts) = −(r2x0 − l2)1/2, and

then (at t > ts) moves to the left reaching the velocity −v0 in the long-time limit. As

for rx0 > 0, the larger |rx0| is, the faster the limiting velocity −v0 is reached.

It should be also mentioned that in the special case when ϕ0 = π/2 only two

dynamical regimes, the first and fourth, can be realized at rx0 > 0 and rx0 < 0,

respectively. Since in this case l = 0, the second and third regimes are reduced to

the state rx = rx0 = 0, which is unstable (the particle with rx0 = 0 moves either to the

left or to the right).

To illustrate the theoretical and numerical results, we consider SmCo5 nanoparticles

suspended in water at room temperature (295K) and characterized by the parameters

M = 1.36 × 103 emu cm−3, ρn = 8.31 g cm−3 is the particle density, ρ = 1 g cm−3,

and η = 9.62 × 10−3P. Choosing a = 2 × 10−5 cm (the critical single-domain

diameter for these particles is about 7.5 × 10−5 cm [29]) and g = 102Oe cm−1, one

finds v0 = 1.26 × 10−3 cm s−1 and ωg = 47.12 s−1. With these parameters, replacing

|v| by v0 and |ω| by MgRx/6η with |Rx| = 1 cm, the definitions of Re and Reω yield

Re = 5.24× 10−6 and Reω = 9.8× 10−2. Since the representation tf = −8πηa3ω holds

even for Reω . 10 [30], the approximation of small Reynolds numbers is well justified.

In our model we also neglect the inertial terms ρnV v̇ and Jω̇ [J = (2/5)ρnV a2 is the

particle moment of inertia] in equations (5) and (6), respectively. A simple analysis

shows that these terms can indeed be neglected at t ≫ max{ttr, tr}, where

ttr =
2ρna

2

9η
, tr =

ρna
2

15η
(24)

are the translational and rotational relaxation times. Because, according to (24),

max{ttr, tr} = ttr = 7.68×10−8 s, we make sure that the inertial effects in the dynamics

of SmCo5 nanoparticles are negligible already at t ≫ 10−7 s. Finally, the single-particle

approximation used in our theoretical model is justified, i.e., the magnetic dipole-

dipole and hydrodynamic interactions can be ignored, if the average distance d between

nanoparticles is large enough. In particular, the energy of the dipole-dipole interaction

of two particles, (MV )2/d3, is negligible compared to the particle energy in the gradient

magnetic field, MV |Hg|, if d ≫ (4πM/3g|Rx|)
1/3a. At the same time, the condition

of smallness of the hydrodynamic interaction, which holds when the volume fraction of

nanoparticles is small, i.e., V/d3 ≪ 1, is not so restrictive: d ≫ (4π/3)1/3a.

In figure 1, we show the dependence of the azimuthal angle ϕ on the dimensionless

time ωgt for different values of rx0. They represent four regimes of behavior of the

function ϕ = ϕ(t), when rx0 ≥ 0 (first regime, curve 1), rx0 ∈ (−l, 0) (second regime,

curve 2), rx0 = −l (third regime, curve 3), and rx0 < −l (fourth regime, curve 4). Figure

2 illustrates the time dependence of the dimensionless particle coordinate rx under the

same conditions as in figure 1. As seen, the numerical results presented in these figures

confirm the existence of predicted regimes of the nanoparticle dynamics. Finally, to

verify the theoretical result (21), we used the numerical results from figures 1 and 2 to

calculate the quantity Γ = r2x + (4/3) ln (sin2 ϕ/ sin2 ϕ0) for two moments of time and
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Figure 1. Plots of the function ϕ = ϕ(t) obtained via numerical solution of equation

(14) for H⊥ = 0, ϕ0 = 0.6 rad and different values of the initial particle position rx0.

Since, according to (23), in this case l = 1.235, the values of rx0 are chosen to reproduce

all predicted regimes of the nanoparticle dynamics: rx0 = 1.0 (curve 1), rx0 = −1.0

(curve 2), rx0 = −l (curve 3), and rx0 = −1.5 (curve 4).

Figure 2. Plots of the dimensionless particle position rx = rx(t) obtained from (12)

by solving equation (14) for the same parameters as in figure 1.

different values of the initial particle position rx0. The comparison of the obtained data

with the theoretical dependence Γ = r2x0, see figure 3, confirms its validity.

As it was mentioned above, the magnetic field H‖ shifts the point in which

Hg = 0. This means that H‖ shifts also the intervals where different regimes of the

nanoparticle dynamics are realized (for example, the first dynamical regime occurs now

at rx0 > −H‖/ga). It is important to emphasize that, since the dimensionless shift

value |H‖|/ga can be rather large even for small H‖ (e.g., in our case it equals 104 if

H‖ = 20Oe), the varying of the magnetic field strength H‖ is an effective method for

changing the dynamical regimes.
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Figure 3. Dependence of the quantity Γ on the dimensionless initial particle position

rx0. The numerical data are marked by symbols (the circles and squares correspond

to ωgt = 1 and ωgt = 3, respectively), and the theoretical result Γ = r2
x0

is shown by

the solid curve.

3.2. Nanoparticle dynamics at H⊥ 6= 0

In this case, the theoretical analysis of transport properties of ferromagnetic nano-

particles is more complicated. Therefore, here we study them analytically only at small

and large times. In order to analyse the nanoparticle dynamics at t → 0, it is convenient

to use equations (8) and (12), which in the first-order approximation yield

ϕ = ϕ0 + (ω⊥ cosϕ0 − ωgrx0 sinϕ0) t (25)

and

rx = rx0 +
v0
a
cosϕ0 t. (26)

The last result shows that, as in the previous case, all particles at small times move to

the right with the same initial velocity v0 cosϕ0 [recall, ϕ0 ∈ (0, π/2)]. In contrast, the

rotation of particles depends now not only on rx0, but also on H⊥.

Our qualitative analysis suggests that, like for H⊥ = 0, four regimes of the

nanoparticle dynamics exist for H⊥ 6= 0 as well. They are realized at rx0 ≥ l1,

rx0 ∈ (−l2, l1), rx0 = −l2, and rx0 < −l2, respectively. According to (25), the azimuthal

angle ϕ decreases monotonically with time, i.e., the first dynamical regime is realized,

if rx0 ≥ l1, where

l1 =
ω⊥

ωg

cotϕ0. (27)

This result agrees with that for H⊥ = 0 (l1 → 0 as H⊥ → 0) and indicates that the

magnetic field H⊥ can significantly change the value of l1 (the condition l1 ≫ 1 can

easily be achieved).

Because our analysis is approximate, we are not able to find an exact expression

for l2. However, using (25) and (26), it is possible to roughly estimate this quantity.
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Indeed, choosing rx0 = −l2 and assuming that ϕ(ts) = π/2 and rx(ts) = 0 (recall, ts is

the stoping time), from (25) – (27) one obtains

l2 =
1

2
l1

[(

1 +
8(π − 2ϕ0)

3l2
1
tanϕ0

)1/2

− 1

]

. (28)

For l1 ≪ 1 (H⊥ ≪ ga tanϕ0) and l1 ≫ 1 (H⊥ ≫ ga tanϕ0) this formula yields

l2|l1≪1 =

(

2(π − 2ϕ0)

3 tanϕ0

)1/2

(29)

and

l2|l1≫1 =
2

3
(π − 2ϕ0)

ga

H⊥
(30)

(l2|l1≫1 ≪ 1). We emphasize two points regarding these results. First, the approximate

formula (29) is in perfect agreement with the exact one (23) only if π/2− ϕ0 ≪ 1; the

difference between l2|l1≪1 and l grows rapidly with decreasing ϕ0. This is a consequence

of the fact that the solutions (25) and (26) are valid only for ωgt ≪ 1. And second,

since the condition l1 ≫ 1 is easily achieved, the magnetic field H⊥ can also be used for

changing the transport properties of suspended nanoparticles. It should be especially

noted that H⊥, in contrast to H‖, shifts the regions of different dynamical regimes

nonuniformly.

At large times, it is convenient to introduce the parameter σ, which for particles

moving to the right or left equals 1 or −1, respectively. Since the azimuthal angle ϕ for

such particles tends to zero or π, it can be represented as ϕ = π(1 − σ)/2 + σϕ1 with

ϕ1 ≪ 1. Taking also into account that, in linear approximation, cosϕ = σ, sinϕ = ϕ1

and, according to (12), rx ∼ σ(4/3)ωgt as t → ∞, equation (8) in the long-time limit

reduces to

ϕ̇1 − ω⊥ +
4

3
ω2

gt ϕ1 = 0. (31)

Its asymptotic solution is given by ϕ1 ∼ 3ω⊥/(4ω
2

gt), i.e., the azimuthal angle ϕ

approaches the limiting values 0 and π inversely proportional to time. If ω⊥ = 0,

these limiting values are approached exponentially: ϕ1 ∼ exp (−2ω2

gt
2/3).

Numerical analysis of the nanoparticle dynamics at H⊥ 6= 0 confirms both the

existence of four dynamical regimes (similar to those for H⊥ = 0) and strong influence

of H⊥ on the intervals of rx0, where these regimes occur. In figure 4, we show the

dependence of the boundaries of these intervals, l1 and l2, on the ratioH⊥/ga (= ω⊥/ωg).

Since, according to (30), l2 approaches zero as H⊥ increases, the width ∆ = l1 + l2 of

the interval (−l2, l1), where the second dynamical regime is realized, is of the order of

l1(≫ 1) even for small H⊥ (e.g., ∆ ≈ l1 = 731 for H⊥ = 1Oe). Recall in this context

that l1|H⊥=0 = 0, l2|H⊥=0 = l and so ∆|H⊥=0 = 1.235. As seen from this figure, the

theoretical and numerical results for l1 are in complete agreement. Note also that in

spite of the approximate character of the theoretical result (28), it agrees perfectly with

the numerical data for l2.
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Figure 4. Dependence of l2 and l1 (in the inset) on the dimensionless magnetic field

H⊥/ga for the same parameters as in figure 1. The numerical data for l1 and l2,

obtained by solving equation (14), are marked by circles. The approximate formula

(28) and theoretical result (27) are represented by solid and dashed lines, respectively.

Figure 5. Schematic diagram of the system and sources for the uniform and gradient

magnetic fields. The electromagnets generating the uniform (H⊥) and gradient (Hg)

magnetic fields and the suspension reservoir are marked by 1 and 2, respectively.

Thus, the dynamics of suspended ferromagnetic nanoparticles in the gradient

magnetic field is strongly affected by uniform magnetic fields H‖ andH⊥. It is important

to emphasize that while H‖ only shifts the zero point of the gradient field, the influence

of H⊥ on the nanoparticle dynamics is much more complicated. It seems that the

non-trivial transport properties of these particles, resulting from the joint action of the

gradient magnetic field and uniform magnetic fields H‖ and H⊥, could be used, e.g., in

separation science.

In order to illustrate the feasibility and effectiveness of the separation process

induced by the gradient and uniform magnetic fields, let us estimate the time T of

complete separation of suspended SmCo5 nanoparticles (whose parameters are given

above) in a rectangular reservoir, see figure 5. For this purpose, we assume that the

reservoir boundaries are perpendicular to the coordinate axes, the x axis crosses the

left and right boundaries at the points x = −L/2 and x = L/2, respectively (L is the



Directed transport of suspended ferromagnetic nanoparticles 12

reservoir width in the x direction), and the number of suspended nanoparticles in the

reservoir equals N . In this geometry, after switching on the gradient magnetic field,

the nanoparticles are concentrated near the left and right boundaries. Assuming also

that the distribution of nanoparticles at t = 0 is uniform and the limiting velocities

v0 and −v0 are achieved for t ≪ T , one may conclude that if H‖ = H⊥ = 0, then

the complete separation with Nl ≈ N/2 and Nr ≈ N/2 (Nl and Nr are the number of

nanoparticles near the left and right boundaries, respectively), is achieved at T ≈ L/2v0
(e.g., T ≈ 6.6min for L = 1 cm). At the same time, if H‖ = gL/2 and H⊥ = 0, then

Nl ≈ 0 and Nr ≈ N at T ≈ L/v0 ≈ 13.2min. It is important to stress that real

suspensions contain nanoparticles of different sizes. Because the characteristic velocity

v0 depends on the particle size, see (11), the separation time T is different for different

nanoparticles. In particular, for smaller SmCo5 nanoparticles with a = 10−5 cm we have

v0 = 3.15 × 10−4 cm s−1, and so T ≈ 26.4min if H‖ = H⊥ = 0 and T ≈ 52.8min if

H‖ = gL/2 and H⊥ = 0, respectively, i.e., the smaller the nanoparticles the slower

the separation process. Note also that the concentration profile of nanoparticles for

t ∈ (0, T ) and arbitrary H‖ and H⊥ can easily be calculated within the above theory.

4. Conclusions

The gradient magnetic field produces the force that acts on suspended ferromagnetic

nanoparticles and induces their translational motion along the gradient field direction.

In contrast, since the external uniform magnetic field does not produce any force, this

field does not affect directly the translational motion of these particles. However, if

particles are subjected to both the gradient and uniform magnetic fields, the latter

can influence their transport properties. The reason is that the force caused by

the magnetic field gradient depends on the direction of the particle magnetization.

Therefore, changing the magnetization direction, the uniform magnetic field (as well as

the gradient magnetic field) can indirectly affect the transport properties of suspended

ferromagnetic nanoparticles.

To study this effect in detail, we have introduced a minimal set of equations that

describes the coupled translational and rotational dynamics of suspended nanoparticles

under the action of the gradient and uniform magnetic fields. By solving these equations

analytically and numerically, we have surprisingly discovered that nanoparticles exhibit

complex dynamical behavior. In particular, it has been established that, depending on

the initial particle positions, there exist four different regimes for the directed transport

of such nanoparticles. Namely, the particle velocity in these regimes (I) increases with

time and then saturates, (II) decreases and then increases to the saturated value, (III)

decreases to zero, and (IV) decreases to zero, changes sign and saturates again. It

has also been shown that the external uniform magnetic field significantly changes the

intervals of the initial particle positions, where these regimes are realized. Based on

these properties, we have proposed to use the gradient and uniform magnetic fields

for controllable separation of suspended nanoparticles. It seems also that the observed
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properties of directed transport may be useful for such biomedical applications as drug

delivery and cell separation [31, 32].
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