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A novel approach for efficient automatic voltage regulation (AVR) control using hybridized artificial 

neural network (ANN) model has been proposed in this research work. The novel automatic voltage regula-

tor tuning using an improved neural network has been proposed in this paper. Artificial neural network 

has been used as focused time delay neural network (FTDNN). Validation is performed by comparing with 

the methods of feed-forward backpropagation neural networks, cascade-forward backpropagation neural 

networks, Elman-recurrent neural networks, focused time-delay neural networks and Distributed Time 

Delay Neural Networks (DTDNN). This hybridized ANN model incorporated a metaheuristic method 

namely Slime Mold Algorithm (SMA) for obtaining improved result on AVR control. SMA has characteris-

tics that uses adaptive weights to simulate the process to generate feedback from the movement of bio-

oscillator-based slime molds in foraging, exploring, and exploiting areas. The performance of the proposed 

method is focused on speed and rotor angle. The proposed method is compared with other neural network 

methods in a broad set of benchmarks to verify system efficiency. Promising results were obtained in tun-

ing the AVR under 30 %, 60 % and 90 % loading conditions at slime mold count of 50. 
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1. INTRODUCTION 
 

The diversity of electricity grid loading has re-

ceived more attention in recent years. Electrical sys-

tem load is a function of the demand for active and 

reactive power which depends on various variables 

including time, weather, geography, and economy. 

This is influenced by the increase in renewable re-

sources and increasing number of electric vehicles that 

are widespread. The complexity of power systems 

caused by interconnection and high demand for charg-

ing through transmission and distribution networks 

[1]. Stability has been a major problem in the perfor-

mance of the operation of the power system. Instability 

results in island formation, voltage drop, and blackout. 

This often occurs due to overloads, lightning strikes, 

faults etc. [2]. Controllers with high stability perfor-

mance are designed to maintain stable operation in 

various operating conditions. This is useful to reduce 

unwanted conditions. Electrical power systems display 

unfamiliar patterns when experiencing major disrup-

tions. This depends on the loading conditions of the 

system structure and the location of the disturbance. 

The modern electric power systems have a high multi-

variable character that used to be dynamic with differ-

ent response rates [3]. Electrical system is designed to 

operate at a specified value. Changes in the system 

have been allowed with tolerance limits [4]. 

A constant output voltage on a generator is very im-

portant to produce the expected power supply. Changes 

in the output voltage of a generator are influenced by 

various kinds of interference factors, one of which is a 

change in load. Therefore, a special regulator equip-

ment is needed to keep the generator output voltage 

constant even when the generator is affected by these 

interference factors. In addition, with the aim of main-

taining the stability of the system, this regulator must 

be able to regulate the production or absorption of reac-

tive power from the network at every change in load. 

This voltage regulator can be controlled both manually 

and automatically. In large-scale interconnection sys-

tems, manual regulators have never been used. Moreo-

ver, an automatic regulator device called an Automatic 

Voltage Regulator (AVR) has been installed in each 

generator. AVR is set under certain operating condi-

tions. AVR is useful for maintaining the frequency and 

magnitude of the voltage within its limits. Small chang-

es depend on changes in rotor angle and speed [5]. 

In several recent research works, the researchers 

have updated methodologies to improve AVR control 

more efficiently such as Particle Swarm Optimization 

(PSO) [6-8], Salp Swarm Optimization algorithm 

[9, 10], Teaching-Learning-Based Optimization (TLBO) 

[11, 12], Cuckoo Search Algorithm [13-14], Sine-cosine 

algorithm [15-16], and neural network [17-19]. 

An automatic voltage regulator tuning using an im-

proved neural network has been proposed in this paper. 

The method to improve the neural network is slime 

mold algorithm. Artificial neural network has been 

used in this study of focused time delay neural network 

(FTDNN). The generator is modeled using Heffron-

Philips. This work mainly focuses on rotor speed and 

rotor angle to find out the best suitable performance of 

the proposed method. 

http://jnep.sumdu.edu.ua/index.php?lang=en
http://jnep.sumdu.edu.ua/index.php?lang=uk
http://sumdu.edu.ua/
https://doi.org/10.21272/jnep.13(3).03038
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Validation is performed by comparing with the 

methods of feed-forward backpropagation neural net-

works, cascade-forward backpropagation neural net-

works, Elman-recurrent neural networks, focused time-

delay neural networks and Distributed Time Delay 

Neural Networks (DTDNN). 

 

2. PROPOSED METHODOLOGY 
 

2.1 Slime Mold Algorithm 
 

Slime Mold Algorithm (SMA) method is an optimi-

zation algorithm that duplicates the changing habits 

and morphology of the slime mold physarum polyceph-

alum in finding food. Slime mold is eukaryotes that 

occupy cold and damp areas. The main stage of the 

slime mold namely plasmodium, which is the stage of 

organic matter in the slime mold finding for food, twin-

ing it, and detaching enzymes to eat it. Slime mold has 

unique patterns that can grow more than 900 square 

centimeters if there is an excess of food resources in 

the surrounding environment. Slime mold has the 

ability to optimize for finding food. Slime mold can 

choose the most food sources. On the other hand, slime 

mold also takes into account speed, accuracy and risk 

in finding food [20]. 

Slime mold with inadequate information must de-

cide when the right time to move to other areas when 

looking for food. When slime mold occupies areas of 

high food supply, the pressure to move decreases. Slime 

mold has unique characteristics that can utilize a vari-

ety of food sources simultaneously. The adaptability of 

slime molds can adjust search patterns based on food 

quality. Slime molds will search in restricted areas 

when food supplies are plentiful. However, the slime 

mold will enlarge the search area when the food supply 

in the area is little. The slime mold algorithm generally 

consists of following parts: 

 

Phase 1: Approach food 
 

Slime mold searches for and recognizes food from 

odors through the air. This method can be modelled as 

follows: 
 

 𝑃(𝑡 + 1)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = {
𝑃𝑏(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  + 𝑣𝑙⃗⃗  ⃗ ∙ (�⃗⃗⃗� ∙ 𝑃𝐴(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  − 𝑃𝐵(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ) , 𝑟 < 𝑝

𝑣𝑑⃗⃗ ⃗⃗  ∙ 𝑃(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , 𝑟 ≥ 𝑝
 (1) 

 

 𝑝 = tanh|𝐻(𝑖) − 𝐵𝐹|     𝑖 ∈ 1,2,… , 𝑛, (2) 
 

 𝑣𝑙⃗⃗  ⃗ = [−𝑎, 𝑎], (3) 
 

 𝑎 = arctanh (− (
𝑡

max _𝑡
) + 1), (4) 

 

where, the unique spot with the best smell concentra-

tion currently established is 𝑃𝑏⃗⃗⃗⃗  , 𝑣𝑙⃗⃗  ⃗ is measurable varia-

ble with a limit [−𝑎, 𝑎], linearly decreased variables 

ranging from 1 to 0 is 𝑣𝑑⃗⃗ ⃗⃗  , 𝑡 is the current iteration, the 

position of the slime mold is �⃗� , two values chosen ran-

domly are 𝑃𝐴⃗⃗⃗⃗  and 𝑃𝐵⃗⃗⃗⃗ ), �⃗⃗⃗�  is the weight of slime mold. 

𝐻(𝑖) is the fitness of �⃗� , 𝐵𝐹 is the best fitness obtained 

in all iterations. 

The formula of �⃗⃗⃗�  is listed as follows: 
 

𝑊(𝑆𝑚𝑒𝑙𝑙𝐼𝑛𝑑𝑒𝑥(𝑖))⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

=

{
 
 

 
 1 + 𝑟 ∙ 𝑙𝑜𝑔 (

𝑏𝐹 − 𝐻(𝑖)

𝑏𝐹 − 𝑤𝐹
+ 1) , 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛  

1 − 𝑟 ∙ 𝑙𝑜𝑔 (
𝑏𝐹 − 𝐻(𝑖)

𝑏𝐹 − 𝑤𝐹
+ 1) , 𝑜𝑡ℎ𝑒𝑟𝑠

 
(5) 

  

𝑆𝑚𝑒𝑙𝑙𝐼𝑛𝑑𝑒𝑥 = 𝑠𝑜𝑟𝑡(𝑆), (6) 
 

where condition parameter is indicating that 𝐻(𝑖) oc-

cupies the top of the population, R is a random value 

between 0 and 1, 𝑏𝐹 is the best fitness measure in the 

current iteration process, 𝑤𝐹 is the lowest fitness value 

in the currently iteration process, 𝑆𝑚𝑒𝑙𝑙𝐼𝑛𝑑𝑒𝑥 is the 

series of fitness parameters sorted. 

 

Phase 2: Wrap food 
 

The phase is to duplicate the contraction mode of 

the slime mold structure mathematically when looking 

for food. The more food supply that is touched by the 

slime mold network. The signal generated by the bio-

oscillator is getting stronger, the faster the cytoplasm 

flows and the thicker the net. 
 

𝑆𝑃∗⃗⃗⃗⃗ 

= {

𝑟𝑎𝑛𝑑 ∙ (𝑢𝑏 − 𝑙𝑏) + 𝑙𝑏, 𝑟𝑎𝑛𝑑 < 𝑧             

𝑃𝑏(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  + 𝑣𝑙⃗⃗  ⃗ ∙ (𝑊 ∙ 𝑃𝐴(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  − 𝑃𝐵(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ) , 𝑟 < 𝑝         

𝑣𝑑⃗⃗ ⃗⃗  ∙ 𝑃(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , 𝑟 ≥ 𝑝                                                         

 
(7) 

 

where 𝑙𝑏 and 𝑢𝑏 are the lower and upper limits of the 

seeking, 𝑟𝑎𝑛𝑑 and 𝑟 are the random values with range 0 

to 1, z is an experiment to parameter settings. 

 

Phase 3: Grabble food 
 

Slime mold is very dependent on the information 

signal sent by the biological oscillator. This will make 

the slime mold in the best position. For the duplication 

of variant widths of the slime mold parameters are 

used �⃗⃗⃗� , 𝑣𝑙⃗⃗  ⃗, and 𝑣𝑑⃗⃗ ⃗⃗  . 
�⃗⃗⃗�  represents a duplication of the slime mold oscil-

lation frequency when at different food concentrations. 

This makes slime mold reach food faster. On the other 

hand, when the concentration of food is low from the 

position of the slime mold. Slime mold will slow down. 

So that the movement of the slime mold is more effi-

cient. The selective character of the slime mold is du-

plicated in 𝑣𝑙⃗⃗  ⃗ and 𝑣𝑑⃗⃗ ⃗⃗   to find the latest food sources. If 

the slime mold finds the latest food source. Slime mold 

still have organics that can be used to explore the lat-

est and highest quality food sources. 
𝑣𝑙⃗⃗  ⃗ process that duplicates the behavior of the mold 

slime to provide information whether to approach the 

food or find other food sources. The period will be influ-

enced by environmental factors. On the other hand, 

this will increase the impulse of the slime mold to find 

high-quality food and avoid local traps. 

 

2.2 Focused Time Delay Neural Networks 

(FTDNN) 
 

Focused Time Delay Neural Networks (FTDNN) are 

dynamic ANN types. FTDNN has a topology consisting 
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of forward feed which has a time delay. This is placed 

on the network through which the input is passed. 
FTDNN was developed primarily to process temporary 

patterns [19]. Time delay placed on topology will sup-

port in predicting and controlling problems effectively 

and efficiently in dynamic ANN, the results have sev-

eral variables that can be used to maintain the contex-

tual part of the input unit. The part is available in local 

memory in the form of tapped time delay. The basic 

FTDNN topology consists of memory structures and 

non-linear associations [21]. The FTDNN architecture 

can be seen in Fig. 1. 
 

 
 

Fig. 1 – Focused time delay neural network: different layer 

topologies 
 

The memory structure functions are to store records 

of related past information and the associator functions 

is to predict future events with the help of memory 

structures. Memory structure contains a time delay 

signal that originates from the input. Whereas the 

associator contains a conventional network of feed-

forward. The main structure of FTDNN is to have a 

special memory structure that is in the input layer. The 

advantage of FTDNN is having a simple topology. 

Where L is the length of the delay path memory, unit 

input is 𝐼𝑛(𝑡), the network processes is 𝐼𝑛(𝑡), 𝐼𝑛(𝑡 − 1), 
𝐼𝑛(𝑡 − 2) ... and 𝐼𝑛(𝑡 − 𝐿), Therefore, the input signal 

𝑋1(𝑡) to neuron i (Fig. 1) is given as: 
 

 𝑋1(𝑡) =∑ 𝑊𝑖𝑗𝐼𝑛(t − L) + 𝑏1
𝑗

𝑖=1
. (8) 

 

Output 𝑋2(𝑡) is the result of processing 𝑋1(𝑡)using a 

non-linear activation function. A function that is often 

used is the sigmoid activation function 
 

 𝑋2(𝑡) = 𝑓(𝑋1(𝑡)) =
1

1+𝑒𝑥𝑝𝑋1
. (9) 

 

At layer 2 there is no time delay. Output 𝑋2(𝑡) is be-

comes input at layer 2. It becomes output 𝑋3(𝑡). The 

results are then activated using the activation function 
 

 𝑋3(𝑡) =∑ 𝑊𝑗𝑘𝑋2(t) + 𝑏2
𝑘

𝑗=1
, (10) 

 

 𝑋4(𝑡) = 𝑓(𝑋3(𝑡)) =
1

1+𝑒𝑥𝑝𝑋3
. (11) 

 

One of FTDNN's features is a topology that has not 

backpropagation to calculate network gradients. The 

tapped time delay is only in the input layer and does 

not contain a feedback loop. 

 

2.3 Automatic Voltage Regulator 
 

The generator control consists of two parts, namely 

Automatic voltage regulators (AVR) and power system 

stabilizers (PSS). AVR and PSS have functions to 

maintain generator stability [22]. AVR functions to 

regulate the terminal voltage at a predetermined value. 

Simple AVR is composed of four components, namely 

amplifier, exciter, generator and sensor. The schematic 

of AVR can be seen in Fig. 2. For mathematical model-

ing, components are assumed to be linear. This takes 

into account the main time constant and ignores non-

linearity. The control of the generator is composed of 

the AVR and PSS. An automatic voltage regulator 

(AVR) and power system stabilizer (PSS) are used to 

repair the transient stability. 
 

 
 

Fig. 2 – Automatic voltage regulation control schematic dia-

gram 

 

3. PROPOSED SMA-FTDNN MODEL 
 

The application of SMA and FTDNN in the tuning 

of AVR can be illustrated as shown in Fig. 3. The first 

step is to model the generator in a single machine type 

Heffron-Philips. The simulation results of the modeling 

are data speed and rotor angle. This data is used as 

input in a neural network. Random initial weight data 

from FTDNN is sampled. The results are processed 

using SMA which has three phases. It is a food ap-

proach, wrapping food and garbled food. SMA results 

will be a potential weight for FTDNN that can be used 

in the network. 

 

4. RESULTS AND DISCUSSION 
 

The proposed method was applied to optimize con-

ventional controller in order to see the enhancement 

stability of the power system. The application for the 

SMA-FTDNN was written in MATLAB. The dynamic 

and transient condition of the proposed regulator was 

compared with the operation of the other method con-

troller under three different loading conditions: 30, 60 

and 90 %. The validation of the proposed method will be 

carried out by comparing it with the FFBNN, CFBNN, 

Elman-RNN, FTDNN and DTDNN methods. Each of 

these was investigated for speed and rotor angle. 

The variables of SMA are also required to be set up 

before optimization of the FTDNN model, including the 

number of Slime Mold (Search Agent), maximum num-

ber of iterations, and lower-upper limit of the optimiza-

tion (L). Fig. 4 is the performance of search agent with 

100 iterations. The use of the highest search agent gets 

the best score for fitness. The peak value is 0.2093. 

Meanwhile, the settling time value is 15.581. The de-

tailed results can be seen in Table 1. 
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Fig. 3 – Proposed SMA-FTDNN model flowchart 
 

 
 

Fig. 4 – Convergence graph of various search agents used for 

SMA-FTDNN process 
 

Table 1 – Parameter values for various search agents 
 

Search agent Rise time Settling time Peak 

30 24.32 52.298 0.3406 

40 13.78 26.723 0.2380 

50 07.09 15.581 0.2093 
 

The lower-upper parameter also needs to be set to 

get a value that can be used for optimization. The test 

uses a random range value, namely the range [– 1, 1], 

[– 5, 5], [– 10, 10] and [– 20, 20]. Fig. 5 shows the con-

vergence curve value for each lower-upper using the 

SMA-FTDNN method. In Fig. 5, it can be seen that the 

lower-upper value quickly converges when using the 

value [– 1, 1]. Testing of slime mold and lower-upper 

parameters uses 100 iterations. 

Measurement of the performance of the generator is 

the speed and rotor angle. The first test is carried out 

by overloading the generator with a loading of 30 %. 

The results of the loading can be seen in Fig. 6 and 

Fig. 7. From Fig. 6, the undershoot values of the 

FFBNN, CFBNN, FTDNN and SMA-FTDNN methods 

are obtained the same value. The value is – 0.53: the 

worst score for undershoot belongs to the E-RNN 

method. Value – 0.53: meanwhile, the overshoot value 

of the CFBNN, FTDNN and DTDNN methods has the 

same value, namely 0.39. the worst score belongs to the 

E-RNN method. The value is 0.42. 
 

 
 

Fig. 5 – Convergence graph of lower-upper 
 

 
 

Fig. 6 – AVR speed response with 30 % load 
 

 
 

Fig. 7 – AVR rotor angle response with 30 % load 
 

Fig. 7 is the result of the rotor angle with a loading 

of 30 %. In Fig. 7, the worst values for the overshoot 

and undershoot are 0.7965 and – 2.961. This value 

belongs to the E-RNN method. Meanwhile, the under-

shoot value of the FFBNN, CFBNN, FTDNN and 

DTDNN methods obtained the same value that is equal 

to – 2.919. 

In Table 2, it can be seen that the undershoot, over-

shoot and settling time of the rotor angle in the SMA-

FTDNN method is the best. The values are – 2.913, 

0.6367 and 86.944. The undershoot value of speed in 

the SMA-FTDNN method is the same as for the 

FFBNN, CFBNN and FTDNN methods. Meanwhile, 

the overshoot value is slightly better than the E-RNN 

method. The value is 0.404. 

Experiments with a load of 60 %, the results of the 

SMA-FTDNN method obtained the best overshoot and 

undershoot values of the rotor angle. The values are 

0.7050 and – 3.1524. Meanwhile, the speed results get 

the best score in the undershoot section. The value is  

– 0.5687. The details of the results of the 60 % loading 

can be seen in Table 3. 
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Table 2 – Speed and rotor angle response at 30 % of load 
 

Methods 

Speed response Rotor angle response 

Under-

shoot 

Over-

shoot 

Rise  

time (s) 

Settling 

time (s) 

Under-

shoot 

Over-

shoot 

Rise  

time (s) 

Settling 

time (s) 

FFBNN – 0.5317 0.3987 0.453 86.783 – 2.919 0.6685 2.8210 – 7 84.427 

CFBNN – 0.5317 0.3986 0.5475 86.849 – 2.919 0.6688 2.9110 – 7 84.453 

E-RNN – 0.5371 0.4223 0.6947 86.744 – 2.9861 0.7965 2.9110 – 7 84.453 

FTDNN – 0.5317 0.3986 0.444 86.844 – 2.919 0.6688 2.9010 – 7 84.451 

DTDNN – 0.5317 0.3986 0.444 86.844 – 2.919 0.6688 2.9010 – 7 84.45 

SMA-FTDNN – 0.5314 0.4043 1.2310 – 10 86.944 – 2.913 0.6367 0.7659 84.302 
 

Table 3 – Speed and rotor angle response at 60 % of load 
 

Methods 

Speed response Rotor angle response 

Under-

shoot 

Over-

shoot 

Rise  

time (s) 

Settling 

time (s) 

Under-

shoot 

Over-

shoot 

Rise  

time (s) 

Settling 

time (s)  
FFBNN – 0.5711 0.4296 0.4819 88.144 – 3.1694 0.7161 2.6110 – 7 85.671  

CFBNN – 0.571 0.4294 0.5937 88.17 – 3.1692 0.7165 2.7710 – 7 85.692  

E-RNN – 0.5795 0.4555 0.6714 88.001 – 3.2385 0.8592 2.4810 – 6 83.886  

FTDNN – 0.571 0.4294 0.3998 88.172 – 3.1692 0.7164 2.7610 – 7 85.692  

DTDNN – 0.571 0.4294 0.6879 88.176 – 3.1693 0.7164 2.7710 – 7 85.694  

SMA-FTDNN – 0.5687 0.4338 6.7610 – 10 91.243 – 3.1524 0.705 0.1695 87.361  

 

Table 4 – Speed and rotor angle response at 90 % of load 
 

Methods 

Speed response Rotor angle response 

Under-

shoot 

Over-

shoot 

Rise  

time (s) 

Settling 

time (s) 

Under-

shoot 

Over-

shoot 

Rise  

time (s) 

Settling 

time (s)  

FFBNN – 0.6319 0.4793 0.6236 88.557 – 3.4696 0.7743 3.3210 – 7 86.004  

CFBNN – 0.6319 0.4792 0.6678 88.651 – 3.4696 0.7748 2.8910 – 7 86.009  

E-RNN – 0.6425 0.5084 0.6283 88.408 – 3.5531 0.9341 3.0510 – 7 84.194  

FTDNN – 0.6319 0.4792 0.3231 88.66 – 3.4696 0.7747 2.9110 – 7 86.012  

DTDNN – 0.6319 0.4792 0.6527 88.659 – 3.4696 0.7747 2.8910 – 7 86.01  

SMA-FTDNN – 0.6164 0.4743 0.8365 96.784 – 3.4159 0.7821 2.7610 – 8 91.093  

 

Detailed results of 90 % loading have been por-

trayed in Table 4. With a system loading of 90 %, the 

output value of overshoot and undershoot of the speed 

respond for the SMA-FTDNN method provides highest 

value. The values are – 0.6164 and 0.4743. On the other 

hand, the results of overshoot and undershoot of the 

rotor angle are different. The undershoot value of the 

SMA-FTDNN method is the best. 

 

 

 

 

5. CONCLUSIONS 
 

The development of the latest hybrid methods based 

on artificial intelligence techniques for controlling AVR 

has been discussed in this paper. The comparison and 

evaluation of the methods developed with other meth-

ods are carried out in this article. It can be concluded 

that the metaheuristic method has a better perfor-

mance in optimizing artificial neural network. By using 

the new method, the slime mold algorithm to optimize 

HANN with the focused time delay, the best value is 

obtained in automatic voltage regulation control. 

 

REFERENCES 
 

1. J.G. Vlachogiannis, IEEE Trans. Power Syst. 24 No 4, 1808 

(2009). 

2. X. Zhao, X. Zhang, B. He, Energy Convers. Manag. 50 No 3, 

658 (2009). 

3. S. Kumar, Nallagalva, M.K. Kirar, Ganga Agnihotri, Inter-

national Journal of Scientific Engineering and Technology 

1 No 3 (2012). 

4. S. Majumdar, K. Mandal, N. Chakraborty, 2014 Annual IEEE 

India Conference (INDICON), 1 (Pune: India: 2014). 

5. H. Saadat, Power System Analysis (New York: McGraw-Hill: 

1999). 

6. H. Gozde, M.C. Taplamacioğlu, M. Ari, Proceedings of the 2014 

6th International Conference on Electronics, Computers and 

Artificial Intelligence (ECAI), 23 (Bucharest: Romania: 2014). 

7. J. Femmy Nirmal, D. Jeraldin Auxillia, International Con-

ference on Circuits, Power and Computing Technologies 

(ICCPCT), 661 (Nagercoil, India: 2013). 

8. R. Indhuja, N. Kamaraj, International Conference on Con-

trol, Instrumentation, Communication and Computational 

Technologies (ICCICCT), 159 (Kumaracoil: India: 2016). 

9. I.A. Khan, A.S. Alghamdi, T.A. Jumani, A. Alamgir, A.B. Awan, 

Khidrani, Electronics 8, 1472 (2019). 

10. P. Sirsode, A. Tare, V. Pande, Sixth Indian Control Confer-

ence (ICC), 431 (Hyderabad: India: 2019). 

11. A. Mishra, N. Singh, S. Yadav, Advances in Computing and 

Intelligent Systems, 153 (Singapore: Springer: 2020). 

12. B. Ataşlar Ayyıldız, O. Karahan, J. Sci. Technol. A 21 No 1, 

128 (2020). 

https://doi.org/10.1109/TPWRS.2009.2030420
https://doi.org/10.1109/TPWRS.2009.2030420
https://doi.org/10.1016/j.enconman.2008.10.002
https://doi.org/10.1016/j.enconman.2008.10.002
https://doi.org/10.1016/j.enconman.2008.10.002
https://doi.org/10.1109/INDICON.2014.7030488
https://doi.org/10.1109/INDICON.2014.7030488
https://doi.org/10.1109/INDICON.2014.7030488
https://doi.org/10.1109/ECAI.2014.7090158
https://doi.org/10.1109/ECAI.2014.7090158
https://doi.org/10.1109/ECAI.2014.7090158
https://doi.org/10.1109/ECAI.2014.7090158
https://doi.org/10.1109/ICCPCT.2013.6528960
https://doi.org/10.1109/ICCPCT.2013.6528960
https://doi.org/10.1109/ICCPCT.2013.6528960
https://doi.org/10.1109/ICCPCT.2013.6528960
https://doi.org/10.1109/ICCICCT.2016.7987936
https://doi.org/10.1109/ICCICCT.2016.7987936
https://doi.org/10.1109/ICCICCT.2016.7987936
https://doi.org/10.1109/ICCICCT.2016.7987936
https://doi.org/10.3390/electronics8121472
https://doi.org/10.3390/electronics8121472
https://doi.org/10.1109/ICC47138.2019.9123188
https://doi.org/10.1109/ICC47138.2019.9123188
https://doi.org/10.1109/ICC47138.2019.9123188
https://doi.org/10.1007/978-981-15-0222-4_13
https://doi.org/10.1007/978-981-15-0222-4_13
https://doi.org/10.1007/978-981-15-0222-4_13
https://doi.org/10.18038/estubtda.581895
https://doi.org/10.18038/estubtda.581895
https://doi.org/10.18038/estubtda.581895


 

PAPRI GHOSH, RITAM DUTTA, V. MUTHULAKSHMI J. NANO- ELECTRON. PHYS. 13, 03038 (2021) 

 

 

03038-6 

13. A. Sikander, P. Thakur, R.C. Bansal, S. Rajasekar, Comput. 

Elect. Eng. 70, 261 (2018). 

14. B. Zafer, O. Karahan, J Frankl. Inst. 355 No 13, 5534 (2018). 

15. J. Bhookya, R.K. Jatoth, Evolutionary Intelligence 12 No 4, 

725 (2019). 

16. B. Hekimoğlu, T.I. Meas. Control. 41 No 6, 1761 (2019). 

17. G. Bal, O. Kaplan, S.S. Yalcin, 8th International Conference 

on Renewable Energy Research and Applications (ICRERA), 

1032 (Brasov: Romania: 2019). 

18. M. Elsisi, Neural Comput. Appl. 31, 5017 (2019). 

19. W. Aribowo, EMITTER International Journal of Engineering 

Technology 7 No 1, 34 (2019). 

20. S. Li et al., Future Gener. Comput. Syst. (2020). 

21. M. Abed, A. El-Shafie, S. Siti, J. Comput. Sci. 6, 597 (2010). 

22. S. Essallah, A. Bouallegue, A. Khedher, J. Mod. Power System. 

Clean Energy 7 No 5, 1115 (2019). 

 

 

Гібридизована модель штучної нейронної мережі на основі алгоритму слизової цвілі  

для ефективного автоматичного регулювання напруги 
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У роботі запропоновано новий підхід для ефективного автоматичного регулювання напруги (AVR) 

за допомогою гібридизованої моделі штучної нейронної мережі (ANN), а саме запропоновано нове на-

лаштування AVR з використанням вдосконаленої нейронної мережі. ANN була використана як ней-

ронна мережа зі сфокусованою затримкою часу (FTDNN). Перевірка проводилася шляхом порівняння 

з методами нейронних мереж зворотного поширення з прямим зв'язком, нейронних мереж зворотного 

поширення з каскадним зв'язком, рекурентних нейронних мереж Елмана, FTDNN і нейронних мереж 

з розподіленою затримкою часу (DTDNN). Ця гібридизована модель ANN включала метаевристичний 

метод, а саме алгоритм слизової цвілі (SMA) для отримання поліпшених результатів по контролю 

AVR. SMA має характеристики, які використовують адаптивні одиниці маси для моделювання проце-

су створення зворотного зв'язку від переміщення слизової цвілі на основі біо-осцилятора в місцях ви-

добутку, дослідження і експлуатації. Ефективність запропонованого методу орієнтована на швидкість 

та кут ротора. Запропонований метод порівнюється з іншими методами нейронних мереж у широкому 

наборі тестів для перевірки ефективності системи. Були отримані перспективні результати при на-

лаштуванні AVR для навантаження 30, 60 та 90 % і кількості слизової цвілі 50. 
 

Ключові слова: Штучна нейронна мережа, Алгоритм слизової цвілі, Штучний інтелект, Ефективне 

автоматичне регулювання напруги, Біогенератор. 
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