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Abstract: In this study, we demonstrate the feasibility of Bi-doped tetrahedrite Cu12Sb4−xBixS13

(x = 0.02–0.20) synthesis in an industrial eccentric vibratory mill using Cu, Sb, Bi and S elemental
precursors. High-energy milling was followed by spark plasma sintering. In all the samples, the
prevailing content of tetrahedrite Cu12Sb4S13 (71–87%) and famatinite Cu3SbS4 (13–21%), together
with small amounts of skinnerite Cu3SbS3, have been detected. The occurrence of the individual
Cu-Sb-S phases and oxidation states of bismuth identified as Bi0 and Bi3+ are correlated. The most
prominent effect of the simultaneous milling and doping on the thermoelectric properties is a decrease
in the total thermal conductivity (κ) with increasing Bi content, in relation with the increasing amount
of famatinite and skinnerite contents. The lowest value of κ was achieved for x = 0.2 (1.1 W m−1 K−1

at 675 K). However, this sample also manifests the lowest electrical conductivity σ, combined with
relatively unchanged values for the Seebeck coefficient (S) compared with the un-doped sample.
Overall, the lowered electrical performances outweigh the benefits from the decrease in thermal
conductivity and the resulting figure-of-merit values illustrate a degradation effect of Bi doping on
the thermoelectric properties of tetrahedrite in these synthesis conditions.

Keywords: tetrahedrite; doping; bismuth; high-energy milling; thermoelectricity

1. Introduction

In the Cu-Sb-S system, several ternary copper sulphides like chalcostibnite CuSbS2,
skinnerite Cu3SbS3, famatinite Cu3SbS4 and tetrahedrite Cu12Sb4S13 exist [1]. Among them,
tetrahedrite, an Earth-abundant copper sulphide mineral with extraordinary thermoelectric
properties [2,3], shows a continuous interest in the thermoelectric community [4–10].

The enhancement of thermoelectric performances can often be accomplished via
defect engineering. In this approach, two strategies to modify/generate defects in solids are
applied, i.e., band engineering and phonon engineering [11]. In the former, the power factor
S2σ (S is the Seebeck coefficient, and σ the electrical conductivity) is enhanced by electronic
band structure engineering, while in the second case, the lattice thermal conductivity
κL is reduced by enhanced phonon scattering [11–13]. Transport properties S, σ and κ
are embodied in the dimensionless figure-of-merit ZT = S2σ/κ (where T is temperature
and κ is a sum of lattice thermal conductivity κL and electronic thermal conductivity κe).
Based on the macroscopically measurable parameters S, σ, and κ, the calculated figure-
of-merit illustrates the efficiency of a thermoelectric material [13]. To ensure high voltage
output and low Joule losses, high S and σ are needed. To maintain the temperature
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gradient between the hot and cold sides of a thermocouple, a low κ value is required [14].
Thermoelectric devices are highly desirable because of their silent operation, reliability,
scalability, predictability and durability. They are particularly appreciated when cost and
energy efficiency are not as important as energy availability [15]. However, significantly
lower manufacturing costs, more use cases and increased performances are required to
meaningfully convert waste heat and reduce fossil fuels consumption [9].

Since the 1950s, doping of prospective thermoelectric materials has been the most
popular way to enhance ZT values [14]. Generally, doping affects the charge carrier
concentration as well as serving as point-defects to enhance phonon scattering. In the
1990s, nanostructure engineering was successfully applied and later used as an alternative
to enhance ZT values [11,13,15–20]. Moreover, when non-equilibrium procedures, such
as high-energy milling (HEM), melt spinning (MS) and self-sustaining heating synthesis
(SHS), is applied, the delicate multiscale structures/defects can be obtained [13]. In the case
of HEM [21–29] combined with spark plasma sintering (SPS), the multiscale dimensionality
reduction and the formed nanostructures also contribute to phonon scattering and thus,
to a decrease in the lattice thermal conductivity [20].

Doping of tetrahedrite Cu12Sb4S13 has been performed in numerous studies, see e.g.,
references in [6,10]. While Cu and S positions have been doped many times, doping on
Sb site has been slightly overlooked. In mineral Cu12Sb4S13 this site is usually partly
occupied by As and/or Bi atoms [30,31]. While As is a toxic element, Bi has recently
expanded toward engineering fields and nanomedicine thanks to its efficiency and non-
toxicity [32]. In synthetic Cu12Sb4S13, several attempts have been made to optimise its
thermoelectric performance via doping with Bi. Several synthesis strategies to modify
Cu12Sb4S13 thermoelectric properties with Bi doping were applied [33–36]. For instance,
melt-spinning method for samples preparation by application of the Taguchi method
has been successfully applied, which is a statistical technique to make robust design of
experiments. Moreover, the oxidation and corrosion studies revealed the possibility to use
doped tetrahedrite materials under extreme conditions [35]. The simultaneous double-
or triple-doping of tetrahedrite to obtain Cu12−xNixSb4−yBiyS13−zSez compounds was
also studied. However, this approach complicated the elucidation of the Bi effect itself.
The single- and double-doping was also performed in [37,38] where Zn and Bi dopants
were used. For Cu12−xZnxSb4−yBiyS13 synthesis, HEM and HP methods were applied in
this case. As mentioned in the work of Goncalves et al., other phases like famatinite and
skinnerite were detected. Kumar et al. synthesised Bi doped tetrahedrites with nominal
composition of Cu12Sb4−xBixS13 (x = 0, 0.2, 0.4, 0.6, 0.8) by high temperature solid state
reaction method [39,40]. The best results of thermoelectric performance were achieved for
samples with the lowest content of bismuth.

Based on the literature, we have found several issues which were not fully investigated.
First, as stated in [39], increasing Bi content in the interval (0.2–0.8) leads to the deterioration
of thermoelectric properties of tetrahedrite. The highest power factor and figure of merit
was obtained for the composition Cu12Sb3.8Bi0.2S13 where the lowest content of Bi was
applied. The region with Bi content lower than 0.2 [39] and 0.1 [38] was not examined at
all. Secondly, there is no evidence in the literature of the oxidative states and/or in which
compounds the Bi dopant is present in the Cu-Sb-Bi-S system. Finally, the simultaneous
synthesis and doping in an industrial mill which could document sca-ling possibility of
thermoelectric materials preparation was not performed for this system up until now.

2. Materials and Methods

For mechanochemical synthesis of doped tetrahedrite Cu12Sb4−xBixS13(x = 0.025, 0.05,
0.1, 0.15, 0.2) the following precursors were used: copper (Merck, Darmstadt, Germany, 99%
purity, 99% particles below 70 µm), antimony (Alfa Aesar, Kandel, Germany, 99.5% purity,
99% particles below 120 µm), bismuth (Sigma Aldrich, Taufkirchen, Germany, 99.99%
purity, 99% particles below 152 µm) and sulphur (CG-Chemikalien, Laatzen, Germany, 99%
purity, 99% particles below 390 µm).
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Mechanochemical solid-state syntheses were carried out in an industrial eccentric
vibratory ball mill ESM 656–0.5ks (Siebtechnik, Mülheim an der Ruhr, Germany) working
under the following conditions: 5 L steel satellite milling chamber attached to the main
corpus of the mill, tungsten carbide balls with a diameter of 35 mm, and total mass of 30 kg,
80% ball filling in milling chamber, amplitude of the inhomogeneous vibration 20 mm,
rotation speed of the eccenter 960 min−1, argon atmosphere. The total feed of reaction
precursors was 100 g per batch. Bi was added in the amounts 0.025, 0.05, 0.1, 015 and
0.2 atoms per 4 atoms of Sb in tetrahedrite formula (XBi). The milling was performed for 1 h
for all samples. The photograph of the mill is shown in ESI (Figure S1). After completion of
the milling programs, the resulting pulverised powders were shaped and densified using
SPS (FCTHPD25, Rauenstein, Germany) at 723 K for 30 min (heating and cooling rate of
100 K min−1) under a pressure of 64 MPa using graphite dies of 10 mm diameter and a
slight over pressure of 30 hPa (Ar), in order to prevent sulphur volatilisation. The final
thickness of the pellets was around 8 mm with a geometrical density above of 95% of the
crystallographic value.

The qualitative identification of the phase composition of the sintered samples was
performed by XRD method with an X´Pert PW 3040 MPD diffractometer (Phillips) wor-
king in the 2θ geometry with CuKα radiation. XRD patterns of as-received (milled) samples
were collected using a D8 Advance diffractometer (Bruker, Karlsruhe, Germany) with the
CuKα radiation in the Bragg–Brentano configuration. The generator was set up at 40 kV
and 40 mA. The divergence and receiving slits were 0.3◦ and 0.1 mm, respectively. The
XRD patterns were recorded in the range of 2θ = 10–80◦ with a step of 0.05◦. Rietveld
refinements of XRD data of the as-prepared samples were performed using Diffracplus

TOPAS software (version 6, Bruker, Karlsruhe, Germany). The JCPDS-PDF database was
used for phase identification [41].

XPS spectrometer SPECS PHOIBOS 100 SCI (SPECS Surface Nano Analysis GmbH
Berlin, Germany) and non-monochromatic X-ray source were used. The core spectra were
measured at 70 eV and the survey spectrum at 30 eV at room temperature. Basic pressure
was 1.10−8 mbar. Al Kα excitation at 10 kV for all spectra were acquired. For data analysis,
SPECSLab2 CasaXPS software (CasaSoftware Ltd., Teignmouth, UK) was used. All peaks
were fitted with Shirley and Tougaard type baseline. Silver (Ag3d) was used for calibration
of the spectrometer. Charging of samples was resolved by the calibration on carbon.

The sample with the highest Bi addition (XBi = 0.2) was investigated using scanning
and transmission electron microscopy (SEM and TEM). SEM analyses of polished cross-
section were performed on a field-emission source microscope (FEG-SEM; JSM-7600F,
Jeol Ltd., Tokyo, Japan) operated equipped with an energy dispersive X-ray spectrometer
(EDXS; INCA Oxford 350 EDXS SDD, Oxfordshire, UK). Samples for SEM/EDXS analyses
were prepared by grinding and polishing, finally using 3-micron diamond lapping film.
TEM/EDXS analyses were performed on a conventional microscope operated at 200 kV
(JEM 2100, Jeol Ltd., Tokyo, Japan) equipped with EDXS spectrometer. For TEM analyses,
smaller fragments of the sintered compacts were initially fixed between two silicon supports
using epoxy resin. Then, the composite was mounted into brass tube with 3-mm diameter
and prepared further using the conventional approach including thinning, dimpling and
finally ion-milling (PIPS 691, Gatan Inc., Pleasanton, CA, USA) using 3.8 kV Ar+ ions at
an incidence angle of 10◦ until perforation. Prior to TEM analyses, the specimens were
coated by 3 nm layer of carbon to improve surface electron conductivity (PECS 68s, Gatan,
Pleasanton, CA, USA). The electrical resistivity ρ and Seebeck coefficient S were measured
simultaneously from ingots, from 300 K up to 700 K using an ZEM-3 (Ulvac-Riko, Ikonobe-
cho, Japan) under partial helium pressure. LFA 457 apparatus (Netzsch, Selb, Germany)
was used to measure the thermal diffusivity under argon flow. The thermal conductivity κ
was determined as the product of the geometrical density, the thermal diffusivity, and the
theoretical heat capacity (Dulong−Petit approximation). The Wiedemann-Franz law, using
a Lorenz number estimated from the relationship L = 1.5 + exp(−|S|/116) [42] was used
to calculate the lattice thermal conductivity by subtracting the electronic contribution from
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the total thermal conductivity (κL = κ − κe). The estimated measurement uncertainties
are 6% for the Seebeck coefficient, 8% for the electrical resistivity, 11% for the thermal
conductivity, and 16% for the final figure of merit [43].

3. Results
3.1. Phase Analysis and Structural Parameters

XRD patterns of the sintered samples are displayed in Figure 1. The main phase
corresponds to tetrahedrite Cu12Sb4S13 (space group of I43m), with a large proportion
of famatinite Cu3SbS4 clearly visible. These two phases are present in all Bi-doped sam-
ples. The broad diffraction peaks indicate that the crystallised domains are rather small,
estimated from Rietveld refinement at 72–119 nm and 61–114 nm for tetrahedrite and
famatinite, respectively. Traces of skinnerite Cu3SbS3 were only detected for the most
heavily Bi-doped samples (x = 0.15–0.2). In these samples, the presence of Cu4Bi4S9 phase
can be also hypothesised in agreement with the results by Chen et al. [44]. This multiphase
behaviour can be suppressed in favour of tetrahedrite by cationic doping on Cu position
(see e.g., References in 10) and/or by prolonged high energy milling with subsequent SPS
treatment [45].
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and 0.20.

The quantitative phase relations among the synthesised Cu-Sb-S phases determined
by the Rietveld refinement are shown in Figure 2. For x = 0.025, a maximum content of
87% tetrahedrite is observed, with 21% of famatinite and 8% of skinnerite. These estimated
values are in agreement with the Gibbs free energy values, which measures the feasibility
of solid phase formation: i.e., ∆G = −917.2 kJ mol−1, −266.6 kJ mol−1 and −216.9 kJ mol−1

for tetrahedrite, famatinite and skinnerite, respectively [46]. The influence of Bi on Sb
substitution on the phase distribution is clearly demonstrated. With increasing the amount
of bismuth, more famatinite and skinnerite phases are formed at the expense of tetrahedrite.
This is in agreement with the results of triple cationic (including Bi) and anionic substitution
of high-temperature synthesised tetrahedrite published by Goncalves et al. [33]. Famatinite
and skinnerite phase formation was also previously observed during the synthesis of
tetrahedrites [37,39]. In our previous work on pristine tetrahedrite [10], the formation of
famatinite at the expense of tetrahedrite was observed only for long milling durations.
In analogy with a high temperature treatment [47], this phase can be formed by the
reaction of elemental sulphur with tetrahedrite. In the present study, the phase formation
relationship is more complex due to the presence of bismuth. It remains questionable
whether Bi remains in its elemental form and/or is substituted in tetrahedrite and/or
famatinite as Bi3+ or Bi5+ oxidation state. For example, the reaction of bismuth with sulphur
to form Bi2S3 is thermodynamically feasible (∆G = −139.3 kJ mol−1) [48] and therefore
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cannot be excluded at least as a reaction intermediate. In agreement with Chen et al. [49],
the occurrence of Bi3+ in Cu4Bi4S9 structure can be hypothesised. The identification of
bismuth oxidation states in the reaction products is further elucidated by using the more
sensitive method of X-ray Photoelectron Spectroscopy (XPS), see Section 3.2.
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for sintered samples as a function of the nominal Bi content, XBi.

The values for the unit cell volume VT and VF of tetrahedrite Cu12Sb4S13 and fama-
tinite Cu3SbS4, respectively are displayed in Figure 3 as a function of the Bi content XBi.
Unambiguously, a monotonous decrease of the parameter VT for tetrahedrite is observed
for XBi = 0.025–0.10 with a subsequent irregular increase for XBi = 0.15–0.20. The necessity
to apply higher Bi content for cell expansion was reported by Kumar et al., who observed
an increase in tetrahedrite lattice parameter a for XBi = 0.2–0.8 [39]. The irregular increase
of the lattice constant for Bi-doped tetrahedrite was also documented in [38]. The situation
for famatinite is much more straight-forward: starting from XBi = 0.05, the parameter VF
continuously increases. To summarize, the lattice expansion is documented for both phases
at the higher Bi content (XBi = 0.15–0.20).
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Generally, the lattice expansion is a consequence of an external intervention into
the crystal structure, e.g., by high energy milling and/or atomic substitution [50]. Both
approaches were applied in our case: milling was performed constantly for one hour, and
Bi was incorporated in various amounts. The ionic radii of Bi3+ and Bi5+ are equal to
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96–117 nm (depending on coordination number) and 76 nm, respectively [51]. Antimony
site (where bismuth has to be incorporated) is in Sb3+ state for tetrahedrite and skinnerite
and in Sb5+ state for famatinite [6]. The corresponding values of Sb ionic radii are 76 nm
for tetrahedrite and skinnerite and 60 nm for famatinite, respectively. To elucidate the
pre-sence of oxidation states of Bi and Sb in the synthesised samples, X-ray photoelectron
spectroscopy (XPS) analyses were performed.

3.2. XPS Analysis

The XPS patterns were investigated in detail and are displayed in Figure 4. The spectra
for Sb 3d and Bi 4f were recorded in a high-resolution core level mode. Based on the binding
energy values, a peak splitting (PS) was also determined. The following oxidation states
can be expected: Sb3+ for tetrahedrite and skinnerite [6], Sb5+ for famatinite [52] and Bi3+

and Bi5+ for Bi-doped samples.
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XPS spectra for antimony are depicted in Figure 4a for the sintered sample with no-
minal Bi content, XBi = 0.2. Two intensive peaks corresponding to 3d5/2 and 3d3/2 states are
present. Peak at Eb = 539.82 eV can be connected with Sb3+ state corresponding to antimony
oxidation state in tetrahedrite and skinnerite [10,53]. Peak at 530.82 eV corresponding
to Sb5+ is related to famatinite [52], which is present in 21% as determined by XRD (see
Figure 2).

XPS spectra for bismuth are depicted for the same sample in Figure 4b. The peaks for
Bi4f5/2 and Bi4f7/2 are shown. Peak-splitting value PS = 5.2 eV deduced from Eb = 159.38 eV
and Eb = 164.58 eV respectively is characteristic of Bi3+ oxidation state [52,54]. However,
bismuth in Bi3+ state for these two peaks creates only ~62% of the total peak area. In the
centre of XPS Bi4f spectrum, the third peak is also present. This peak corresponds to
non-consumed bismuth in zero-valent form (Bi0) and accounts for the rest of the total
peak area.

3.3. Microstructural Analyses with SEM and TEM

Backscattered images of the sample with XBi = 0.2 recorded at lower and higher
magnification (Figure 5a,b) show that the sample is composed of three main phases with
different grey shades implicating different average Z-values (Zskinnerite > Ztetrahedrite >
Zfamatinite). Chemical composition analyses with SEM/EDS (Figure 5c) have confirmed that
the main phase (matrix) with medium grey contrast is tetrahedrite (Cu12Sb4S13), grains
with the darkest contrast are famatinite Cu3SbS4, whereas the grains with the brightest
contrast are skinnerite Cu3SbS3. The three phases are fairly homogenously distributed
in the sample (Figure 5a) and, at first view, it appears that the average size of grains is
in the micron-range, i.e., significantly larger than the diffraction domain size determined
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from Rietveld refinement. A closer observation of the microstructures recorded at higher
magnifications (Figure 5b) reveals that some areas with uniform colour that belong to
the same phase are typically composed of smaller grains with sizes well below micron
as expected with nano-sized pores at the grain boundaries due to the SPS processing. In
addition, nano-sized inclusions with brighter contrast are typically observed within the
tetrahedrite matrix. SEM/EDS has shown the presence of a small fraction of Bi only in
spectra recorded from skinnerite-rich areas, whereas signal from Bi was below SEM/EDS
detection limit in tetrahedrite and famatinite areas. The presence of Bi in skinnerite particles
is in agreement with the results of XRD and XPS which showed that the presence of Bi
enhances the formation of skinnerite where Bi is in Bi3+ form. Quantification of Bi in
SEM/EDS spectra from skinnerite grains showed around 3–4 at% of Bi, however, these
results probably underestimate the amount of Bi in skinnerite due to the small (µm3)
interaction volume that also includes grains without (or with a significantly lower amount
of) Bi in the analysis.
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Figure 5. Backscattered SEM images of the sample with a nominal Bi content, XBi = 0.2 at (a) lower
and (b) higher magnification revealing the presence of three main phases with different average
atomic densities (Z). (c) EDS spectra recorded from areas with different contrasts reveal detectable
amounts of Bi only in skinnerite.

Besides areas with uniform phase distribution (as shown in Figure 5a,c), SEM ana-
lyses revealed few remnants of unreacted initial Sb- and Sb/Bi-rich initial particles with
typical diffusion-type microstructure around these particles that developed during SPS.
The presence of elemental Bi from XPS most probably stems from these unreacted par-ticles
(see ESI, Figure S2, Table S1).

The sample was analysed with TEM, depicted in Figure 6a, showing a typical situation
where a skinnerite grain is surrounded by tetrahedrite grains and nano-sized pores trapped
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at the grain boundaries. Famatinite grains were not found in the TEM sample indicating
that the sample was most likely prepared from the tetrahedrite matrix region, where the
presence of brighter nanoparticles is observed in SEM. Selected area electron diffraction
(SAED) analysis of a tetrahedrite grain oriented along the [111] zone axis is shown in
Figure S3 (see ESI). TEM/EDS analysis was used to analyse chemical composition of the
phases. It has been shown that skinnerite contains in average 43.0 at% of S, 42.8 at% of
Cu, 9.5 at% of Sb and 4.7 at% of Bi. The analyses indicate that Bi replaces Sb at its regular
sites in skinnerite, as expected. TEM/EDS analyses did not unambiguously confirm the
presence of Bi in tetrahedrite, as the amount of Bi was at the detection limit, i.e., below
1 at%.

Nanomaterials 2021, 11, x FOR PEER REVIEW 8 of 13 
 

 

atomic densities (Z). (c) EDS spectra recorded from areas with different contrasts reveal detectable 
amounts of Bi only in skinnerite. 

Besides areas with uniform phase distribution (as shown in Figure 5a,c), SEM ana-
lyses revealed few remnants of unreacted initial Sb- and Sb/Bi-rich initial particles with 
typical diffusion-type microstructure around these particles that developed during SPS. 
The presence of elemental Bi from XPS most probably stems from these unreacted par-
ticles (see ESI, Figure S2, Table S1). 

The sample was analysed with TEM, depicted in Figure 6a, showing a typical situa-
tion where a skinnerite grain is surrounded by tetrahedrite grains and nano-sized pores 
trapped at the grain boundaries. Famatinite grains were not found in the TEM sample 
indicating that the sample was most likely prepared from the tetrahedrite matrix region, 
where the presence of brighter nanoparticles is observed in SEM. Selected area electron 
diffraction (SAED) analysis of a tetrahedrite grain oriented along the [111] zone axis is 
shown in Figure S3 (see ESI). TEM/EDS analysis was used to analyse chemical composi-
tion of the phases. It has been shown that skinnerite contains in average 43.0 at% of S, 42.8 
at% of Cu, 9.5 at% of Sb and 4.7 at% of Bi. The analyses indicate that Bi replaces Sb at its 
regular sites in skinnerite, as expected. TEM/EDS analyses did not unambiguously con-
firm the presence of Bi in tetrahedrite, as the amount of Bi was at the detection limit, i.e., 
below 1 at%. 

 
Figure 6. (a) TEM image and (b) EDS analysis of the XBi = 0.2 sample show that Bi is preferentially incorporated into 
skinnerite. 

3.4. Thermoelectric Performance 
The temperature dependence of the electrical conductivity (σ), Seebeck coefficient (S) 

and power factor (PF = S2σ) collected over the temperature range of 300–700 K is shown 
in Figure 7. The electrical conductivity, σ, increases with temperature up to 500 K with a 
subsequent decrease, while the Seebeck coefficient S increases over the full temperature 
range. The positive sign of S confirms p-type carrier of all Bi-doped samples. The decrease 
in the electrical conductivity with increasing Bi content can be explained by the rising 
presence of famatinite [49]. Moreover, the high thermal conductivity of famatinite con-
tributes further to the loss of thermoelectric performance [55]. Overall, as the amount of 
“non-tetrahedrite phases” increases with Bi content, see Figure 2, the sample with the 
lowest Bi content (XBi = 0.025) exhibits the highest values of σ, S and consequently PF. The 
sample doped with the highest Bi content (XBi = 0.2) showed the lowest values of electrical 
conductivity (3.7 × 104 S m−1 at 300 K, 5.2 × 104 S m−1 at 500 K and 4.4 × 104 S m−1 at 700 K). 
It should be noted that the increase of Bi content does not affect much the values of See-
beck coefficient which are equal to 87 μV/K at 300 K and 142 μV K−1 at 700 K. This suggests 
that bismuth in tetrahedrite remains in 3+ oxidation state. The U shape of the electrical 
conductivity is classically observed for tetrahedrites presenting the same magnitude of 
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3.4. Thermoelectric Performance

The temperature dependence of the electrical conductivity (σ), Seebeck coefficient (S)
and power factor (PF = S2σ) collected over the temperature range of 300–700 K is shown
in Figure 7. The electrical conductivity, σ, increases with temperature up to 500 K with
a subsequent decrease, while the Seebeck coefficient S increases over the full tempera-
ture range. The positive sign of S confirms p-type carrier of all Bi-doped samples. The
decrease in the electrical conductivity with increasing Bi content can be explained by the
rising presence of famatinite [49]. Moreover, the high thermal conductivity of famatinite
contributes further to the loss of thermoelectric performance [55]. Overall, as the amount
of “non-tetrahedrite phases” increases with Bi content, see Figure 2, the sample with the
lowest Bi content (XBi = 0.025) exhibits the highest values of σ, S and consequently PF. The
sample doped with the highest Bi content (XBi = 0.2) showed the lowest values of electrical
conductivity (3.7 × 104 S m−1 at 300 K, 5.2 × 104 S m−1 at 500 K and 4.4 × 104 S m−1 at
700 K). It should be noted that the increase of Bi content does not affect much the values
of Seebeck coefficient which are equal to 87 µV/K at 300 K and 142 µV K−1 at 700 K.
This suggests that bismuth in tetrahedrite remains in 3+ oxidation state. The U shape of
the electrical conductivity is classically observed for tetrahedrites presenting the same
magnitude of Seebeck coefficient (i.e., carrier concentration) [3,4]. The material is here in
an intermediate regime between a degenerate semiconductor and semiconductor.
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Therefore, the relatively high values of PF are achieved for the sample with the hi-ghest
Bi content (XBi = 0.2) which reaches 0.28 mW m−1 K−2 at 300 K and 0.85 mW m−1 K−2 at
700 K. Such values are in good agreement with other works on Bi-doped tetrahedrites [34,39].
As the carrier concentration seems unchanged with varying Bi content (similar Seebeck
coefficient), the decrease of PF values for Bi-substituted samples are most likely due to
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additional secondary phases (famatinite, skinnerite) acting as scattering barriers for the
mobility of carriers.

The temperature dependences of the total (κ) and lattice (κL) thermal conductivity are
shown in Figure 8. The decrease in κ as the Bi content increases is mainly explained by the
decrease of the electronic contribution caused by a reduced electrical conductivity.
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To summarise, the temperature dependence of the figure of merit, ZT, is the highest
for undoped Cu12Sb4S13 tetrahedrite (ZT~0.67 at 700 K) suggesting a degradable effect of
Bi doping on the thermoelectric performances of the explored system due to the decrease
in electrical conductivity.

4. Conclusions

Elemental precursors Cu, Sb, Bi and S were successfully used to synthesise Bi-doped
tetrahedrite Cu12Sb4−xBixS13 (x = 0.02–0.20) in an industrial mill. High-energy milling, in
duration of one hour followed by spark plasma sintering, led to several phases like tetra-
hedrite, famatinite and skinnerite, and their nanoscale dimensions have been determined.
Among them, tetrahedrite Cu12Sb4S13 is prevailing with content up to 87% as determined
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by Rietveld refinement. Special attention was devoted to Bi presence which was doped in
amounts x = 0.02–0.20 for Cu12Sb4−xBixS13. Using XPS and SEM/EDS methods, Bi was
found in +3 oxidation state and mainly concentrated in skinnerite phase where it acts as
a stabilising agent. However, SEM analyses revealed few remnants of unreacted Sb- and
Sb/Bi-rich particles with typical diffusion-type microstructure around these particles that
deve-loped during SPS. The presence of elemental Bi detected by XPS most probably stems
from these unreacted particles.

The most prominent effect of the simultaneous milling and doping on the thermo-
electric properties is a decrease in the total thermal conductivity (κ) with increasing Bi
content, in relation with the increasing amount of famatinite and skinnerite contents.
The lowest value of κ was achieved for x = 0.2 (1.1 W m−1 K−1 at 675 K). However, this
sample also manifests the lowest electrical conductivity, σ, along with unchanged values for
Seebeck coefficient (S) resulting in a decrease in the figure-of-merit values. This illustrates
the degradation effect of Bi doping on the thermoelectric properties of tetrahedrite, as
well as demonstrating that complex microstructures are not always beneficial for the
thermoelectric performance. A trade-off between electrical conductivity and Seebeck
coefficient must be considered in order to retain a competitive power factor and thus
benefit from a lower thermal conductivity. In the present case, significant amounts of
second phases are very detrimental to the thermoelectric performances despite interesting
microstructural features.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/nano11061386/s1, Figure S1: Eccentric industrial vibratory mill with attached satellite milling
chamber. Figure S2: (a) Sample area with two partially reacted Sb-inclusions. (b) SEM/EDS analysis
of the right particle has revealed that the brightest part is mostly metallic Sb with some Bi and
perhaps also Cu. The XPS signal of elemental Bi probably stems from these unreacted particles,
which probably formed by alloying of Sb with Bi and Cu during high-energy milling prior to the
SPS densification. The texture radiating from the central part of the particle (marked by dashed line)
formed during SPS processing. 1–4 mark the EDS point analyses, the results are shown in Table S1.
Figure S3: (a) Conventional TEM image with marked edge of the TEM sample, hole (brightest part
of the image) and nano-pores in the thin part of the sample. Tetrahedrite (Ttr) grain oriented along
the zone axis is marked in the image as revealed from (b) experimental and indexed SAED patterns.
Table S1: Results of SEM/EDS analyses of the Sb/Bi inclusion area showing compositional zoning
around the particle that formed during SPS.
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