
Ministry of Education and Science of Ukraine

Sumy State University

Educational and Scientific Institute of Business, Economics and Management

Department of Economic Cybernetics

BACHELOR'S QUALIFICATION WORK

on the topic “Automation of the retail trade at the enterprise”

Completed student of 4th course, group AB-71a.an
 (course number) (group code)

Specialties 051 “Economics” (Business analytics)

 Yu.V. Lebedeva
 (student's last name, initials)

Supervisor Dr. Sc. in Economics, professor,

 O.V. Kuzmenko

 (position, degree, last name, initials)

Sumy-2021

Ministry of Education and Science of Ukraine

Sumy State University

Educational and Scientific Institute of Business, Economics and

Management

Department of Economic Cybernetics

APPROVE

Head of the Department

Dr. Econ. Sciences, Professor

 ____________ Kuzmenko O.V.

 “__”__________________2021

TASK

FOR THE BACHELOR'S QUALIFICATION WORK

in the direction of training 051 Economic (Business analytics)

student 4th year of the group AB-71а.an

Lebedeva Yulia Vitaliivna

1. Topic of the work: Automation of the retail trade at the enterprise approved by

order of the university 0382-III from 15.03.2021.

2. The deadline for the student to submit the completed work "_ " ______ 2021.

3. The purpose of the work is to develop a prototype of a postage management

module at a retail enterprise “Oxygen3000”.

4.The object of the study is the "Oxygen3000" enterprise.

5. The subject of research is the process of postage automation at the

"Oxygen3000" enterprise.

6. Thesis is performed on materials of "Oxygen3000" enterprise.

7. Indicative plan of qualification work, terms of submission of sections to the head

and the maintenance of tasks for performance of the set purpose

Section 1 Analysis of the current state of automation of business processes of the

enterprise __

In section 1 to reveal the characteristics of the object of automation and analysis of

the current state of automation of business processes, the_characteristics of

existing postal services and solutions for automation of postal items, definition and

formulation of requirements for future prototype.

Section 2 Implementation of the prototype of the postal management module

In section 2 make designing the architecture of the prototype of the postal

management module, select the most useful technology for realization, develop the

prototype of the postal management module, create reference example and

instructions for use.

8. Consultations on work:

Chapter Consultant Signature, data

Task issued by Task accepted by

1 Kuzmenko O.V. Lebedeva Yu. V.

2 Kuzmenko O.V. Lebedeva Yu. V.

9. Date of issue of the task“___”__________20__ р.

Supervisor ___________ _O.V. Kuzmenko__

 Signuture Initials, surname

Received the task to perform ___________ _Yu.V. Lebedeva____

 Signuture Initials, surname

ABSTRACT

of the qualifying work

for obtaining the educational and qualification level “bachelor”

Lebedeva Yulia Vitaliivna
 (surname, name, patronymic of the student)

Automation of the retail trade at the enterprise

 The relevance of qualification work is that in today's competitive

environment, firms need to have significant competitive advantages to retain their

own and attract new customers. One of the competitive advantages is the speed of

postal items. The less the customer waits for his product – the greater his

satisfaction. In addition, the current quarantine conditions for the COVID-19 were

a significant challenge for retailers – outlets closed and firms could only sell their

goods by mail. Automation of postal items saves the work of the company's

manager, frees up man-hours, improves the company's service.The purpose of this

work is to develop a prototype of a postage management module at a retail

enterprise.

The object of the research is the “Oxygen3000” enterprise.

The subject of the research is the process of postage automation at the

“Oxygen3000” enterprise.

Methods of research – analysis, algorithmization, synthesis.

Information base – LLC «Oxygen3000», python documentation, API Nova

Poshta.

The main contribution of the work is the practical implementation of the

prototype of the mail management module.

The work was implemented at LLC “Oxygen3000”, reference number

2021/2 from 09.06.2021.

Keywords: automation, mailings, New Mail API, programming, Django

framework.

The content of the qualification work is presented on 35 pages. The

references consist from 40 names, placed on 4 pages. The work contains 6 tables,

14 figures, 2 appendices.

Year of performance of qualification work – 2021.

Year of protection of work – 2021.

CONTENTS

INTRODUCTION ... 7

SECTION 1 ANALYSIS OF THE CURRENT STATE OF AUTOMATION OF

BUSINESS PROCESSES OF THE ENTERPRISE ... 9

1.1 Characteristics of the object of automation and analysis of the current state of

automation of business processes .. 9

1.2 Characteristics of existing solutions for automation of postal items 10

1.3. Formation of system requirements ... 17

SECTION 2 IMPLEMENTATION OF THE PROTOTYPE OF THE POSTAL

MANAGEMENT MODULE .. 19

2.1 Designing the architecture of the prototype of the postal management module

 19

2.2 Selecting of implementation technology ... 23

2.3 Developing the prototype of the postal management module 25

2.4 Reference example and instructions for use ... 33

CONCLUSIONS ... 36

REFERENCES .. 37

APPENDICES ... 41

7

INTRODUCTION

In the 21st century, almost all processes have become automated.

Automation of business processes gives us the opportunity to conduct and control

our business without making a lot of effort, because one program can do in a

couple of minutes what a person will do for several hours. With the increase in

productivity, the income of the company also increases, and all this is due to

information systems and technologies.

To date, to open your own business, it is not enough to have only a sales

outlet and a good supplier, automation is most relevant for managing business

processes.

The main advantages of automation are:

− the emergence of an automated management system (CRM, ERM, PM,

etc.), where it will be possible to see what tasks are and when they need to be done;

− minimization of the human factor in business processes. This includes

forgotten data, procrastination with simple tasks, clients that have not been entered

into the database, etc.;

− saving data from cyber attacks or illegal access. With an automated

control system, you will enter all the actions in the system and, in which case, you

will be able to track them. It is clear that automation does not solve all security

problems, but it makes life much easier.

The purpose of this work is to develop a prototype of a postage management

module at a retail enterprise.

The object of the research is the «Oxygen3000» enterprise.

The subject of the research is the process of postage automation at the

“Oxygen3000” enterprise.

The main tasks of qualifying research work are:

− to characterize the object of research and analyze the state of automation

of business processes;

8

− to analyze the mail services existing on the market and their solutions for

delivery automation;

− to formulate requirements for a web-oriented system;

− to carry out the design of the prototype for the module of postal mailing;

− to reverse the technology corks to the prototype;

− to develop a prototype of an automated postage system;

− develop a test case and instructions for use.

9

SECTION 1 ANALYSIS OF THE CURRENT STATE OF AUTOMATION OF

BUSINESS PROCESSES OF THE ENTERPRISE

1.1 Characteristics of the object of automation and analysis of the current

state of automation of business processes

The object of the study is LLC “Oxygen3000”. Today there are many

options for starting your own business. And in this case, the company focused on a

limited liability company – one of the most popular organizational forms of

business in Ukraine. LLC is a business company, the authorized capital of which is

divided into shares, the size of which is determined by the constituent documents.

This enterprise is engaged in realization and sale of oxygen in cylinders of

the Ukrainian production on various trading platforms, such as the socket,

prom.yua and also through the website. Now this company wants to increase

turnover and automate the registration and shipment of its goods through the site

https://oxygen3000.com/ [1]

The peculiarity of the product is its use not only for rehabilitation after

coronavirus disease. Oxygen “OXYGEN 3000” is used

– for to relieve the symptoms of hypoxia,

– for the prevention of respiratory diseases.

– helps to relieve emotional stress,

– stimulates mental activity,

– increases concentration,

– enhances brain activity,

– increases the overall tone of the body;

– helps to overcome stress, insomnia, weather dependence,

– significantly improves the condition of the skin.

Retail trade is a type of activity for the sale of goods and services directly to

end users for their personal use.

https://oxygen/

10

The main goal of each organization is to meet the needs of the consumer

market. As competition grows, so do consumers’ demands for services and

products. This is all motivation for the company to make its product and services

better. Based on this, it is understood that meeting the needs of consumers is

paramount, so you should also pay due attention to the business processes of the

enterprise, paying attention not only to production but also to product sales. The

existing system operates at the basic level of business processes.

The client leaves a request for an order on the site or trading platform, the

manager calls back, clarifies the details of the order and is engaged in the

registration of the parcel for sending by new mail.

The manager works with the mail service manually, and spends a lot of time

entering information into the information system of the delivery service.

The current system loads the manager, and as a result, delays sending parcels

to customers. The development of automation of the postal process will increase

the speed of processing applications, which will lead to increased turnover,

increased loyalty to the company and image growth.

For a higher level, you need to automate the registration of postage; to do

this, you need to use the integration with the Nova Poshta API.

API (Application Programming Interface) is a set of tools for automating

work with Nova Poshta. The API functionality allows you to quickly integrate

logistics processes into any business and is the only entry point for all customers

and services [2].

1.2 Characteristics of existing solutions for automation of postal items

Various transport organizations of international and local importance operate

on the territory of Ukraine. Local carriers include private companies and the state

service Ukrposhta [3]. International companies mainly cooperate with national

operators, but they can also operate through their own representative branches.

11

In the segment of Ukrainian e-commerce, where logistics issues are of

particular importance, the following carriers are popular:

1. Nova Poshta – 97%.

2. Ukrposhta – 33%.

3. Intime – 24% [4].

4. Delivery – 18% [5].

5. Mist Express – 8% [6].

6. Autolux – 4% [7].

7. Zruchna – 3% [8].

8. Delfast – 0,8% [8].

The percentage next to the name of the organization is the approximate

number of online entrepreneurs that are working with it.

Up to 40% of online stores offer their own courier services, providing

express delivery of goods around the city. Maintaining your own courier service is

quite expensive. But it allows you to keep under full control the efficiency and

quality of delivery, which affect customer satisfaction and their further desire to

buy in the store. In other cases, it all depends on the characteristics of the company

delivering the parcel.

Delivery services have specific billing features. For all economic entities, the

first and one of the highest priority issues when choosing a delivery company is

pricing. Each organization has its own prices. They are calculated individually

depending on the distance and route of dispatch, weight, dimensions, declared

value of the parcel, type of packaging.

Initial price tags of services (box up to 1 kilogram):

− Nova Poshta – from 45 hryvnia;

− Ukrposhta – from 18 hryvnia;

− Intime – from 30 hryvnia;

− Delivery – from 20 hryvnia;

− Mist Express – from 25 hryvnia;

− Autolux – from 25 hryvnia.

12

In direct mailing services, the pricing system is different. In Zruchna, rates

start at 60 hryvnia. Delfast operates at a single fixed rate, which currently amounts

to 170 hryvnia.

The second criterion is the speed of sending. On average, services deliver

orders across Ukraine in such terms:

− Nova Poshta – 1-2 days;

− Ukrposhta – 4-6 days;

− Intime – 1-2 days;

− Delivery – 1-3 days;

− Mist Express – 1-3 days;

− Autolux – 1-3 days.

Express service Zruchna delivers goods within 1 day, Delfast – in a few

hours.

Parcels from Ukrposhta arrives the slowest. Although this company also has

an express delivery service, which is invested in terms of 2-3 days. The most

efficient work is the Nova Poshta.

The coverage area of the logistics company determines the settlements

available for service. The wider it is, the more efficiently Internet sales are made.

Online stores cooperate with shipping organizations with the largest number

of branches in the country. The leader by this criterion is the national operator

Ukrposhta. In second place – Nova Poshta, then – Mist Express, Deliveri and

Intime. The smallest coverage area is at Autolux. Targeted express delivery

services are represented by several branches in Kiev.

Analyzing all the advantages and disadvantages of postal services, it is

necessary to take into account the wishes of customers. NovaPoshta is the most

popular among “Oxygen3000” customers.

The considered operators can boast of a decent level of manufacturability.

Each of them has an API and a modern mobile application (with the exception of

the Zruchna service).

13

The API integrates the capabilities of the service into the website of the

online store. For example, such:

− registration and receipt of a TTN number;

− tracking cargo tracking according to the receipt;

− calculation of the cost of shipments;

− displaying background information on the coverage area of the service.

The software product provided by NovaPoshta (Figure 1.1 and 1.2) is easy

to use and allows you to use the service to the fullest. The forms of the program are

shown in the figures. However, given the peculiarity of the company, all the

functionality provided by Nova Poshta is unnecessary. The company sells one type

of product with certain dimensions. The sender in the company is always the same.

In addition, to create an invoice, you must manually enter this data each time the

manager.

Figure 1.1 – View of the invoice creation window in the Nova Poshta service [10]

14

Figure 1.2 – View of the window describing the characteristics of the shipped

goods [10]

Given the above, it is advisable to integrate on your own website a system

for dialogue with the mail service through the API. Implementation of such a

system will allow you to flexibly adjust the operation of the program.

Nova Poshta provides access to the following services via the API [11]:

Working with addresses:

− Online search in the directory of settlements

− Online street search in the directory of settlements

− Create counterparty address (sender / recipient)

− Edit counterparty address (sender / recipient)

− Delete counterparty address (sender / recipient)

− Company Cities Directory

− Directory of settlements of Ukraine

− Directory of geographic regions of Ukraine

− Directory of departments and types of departments

− Company Directory

− Working with Counterparty data

15

− Create Counterparty

− Create a contact person of the Counterparty

− Create a Counterparty with the type (legal entity) organization

− Create a third-party counterparty

− Download the list of addresses

− Load Counterparty parameters

− Download the list of contact persons of the Counterparty

− Download the list of Consignors / consignees / third parties

− Update Counterparty details

− Update the details of the contact person of the Counterparty

− Delete the recipient's business partner

− Delete Contact face of the Counterparty

API Print Forms:

− Markings – printed form

− Registers – printable

− Express waybill – printed forms

− Working with express waybill registries:

− Add express waybills

− Download information on one registry

− Download the list of registries

− Delete (disband) registries

− Delete express invoices from the register

Working with directories:

− Types of time intervals

− Types of cargo

− Types of return shipping

− Pallet types

16

− Payer types

− Types of return shipping payers

− Types of packaging

− Types of tires and disks

− Description of cargo

− List of errors

− Delivery technologies

− Types of counterparties

− Forms of payment

− Forms of ownership

− API Service return shipment. Implements the Possibility of the Client's

self-registration of the “Return of consignment” service when using the API:

− Check if you can create a return request

− Getting a list of reasons for return

− Getting a list of subtypes and reasons for a return

− Create a return request

− Retrieving a list of return requests

− Deleting a return request

API Service Change data.

Implements the possibility of the Client's self-registration of the “Change

data” service when using the API:

− Checking the possibility of creating a request for data change

− Creation of a data change request

− Deleting an order

− Receiving a list of applications

API Service forwarding shipment. Implements the possibility of the Client's

self-registration of the Call Forwarding service when using the API:

− Checking the possibility of creating a request for forwarding a dispatch

17

− Create a request forwarding a dispatch (branch / address)

− Deleting an order

− Receiving a list of applications

Working with express invoices:

− Calculate the cost of services

− Delivery date forecast

− Create Express Invoice

− Create an express invoice to the address

− Create an express invoice for a branch

− Create an express waybill for the “Nova Poshta” parcel machine

− Create Express Return Shipping Invoice

− Edit express invoice

− Tracking

− Get EN List

− Delete express waybill

− Formation of a request to receive a full report on invoices

− Formation of requests for the creation of EN with additional services

− Formation of requests for the creation of electronic devices with various

types of cargo

1.3. Formation of system requirements

Placing an order, namely delivery, is the main business process associated

with the management of postal items.

The system is must:

1. Collect the information from the customer needed to send the parcel:

– Full name;

– Telephone number;

– your city of residence;

18

– choice of payment (online / cash on delivery);

– choice of delivery (self-pickup from the branch of the NP / courier of the

NP);

– comment (optional, optional).

This will form the customer's card.

By creating a customer card, the process of creating a consignment note will

be automated.

2. Form a consignment note

3. Keep track of how much time the customer has left to pick up the item.

4. Make an auto-return of delivery, if the customer did not pick up the

parcel or refused it.

The mail module must be integrated into the company's general website. The

module must be integrated with the Nova Poshta API. To use this function, you

need to generate an APIkey in your personal account, which will be used when

generating requests.

With the help of the API, the creation of the TTN will be automated, the

registration of auto returns after the expiration of the specified period.

19

SECTION 2 IMPLEMENTATION OF THE PROTOTYPE OF THE POSTAL

MANAGEMENT MODULE

2.1 Designing the architecture of the prototype of the postal management

module

The basis of the program is a dialogue with the API Nova Poshta. The main

process that implements the management of postal items is the automatic formation

of the express invoice. To create an online express invoice document, you need to

perform the following steps:

– Specify sender data

– Specify recipient details

– Select branch and delivery address

– Determine the weight and size of the shipment

– Print / save the document

The conceptual scheme of the module is shown in Figure 2.1

Name

Surname

Middle name

Prone number

City

Street

Building

Comment

Postage automated

system
API Nova Poshta

Postage automated

system

Figure 2.1 – Conceptual scheme of operation of the mail management module

After entering the information, the client forms a table with orders, with

which the company's manager works in the future.

The manager needs to call the client, clarify the order. In case of

confirmation – the manager creates an invoice, prints it, forms a parcel and takes

the appropriate order to the post office.

20

Consider in more detail the algorithm for creating an Internet document of

the consignment note (Figure 2.2).

At the input, the program module receives input data. Then the sender object

is created in the Nova Poshta system via the API. The result is an object reference

identifier. The next step is to obtain a list of sender's contacts. The result of the

stage is an identifier-link to the contact person, his name and phone number.

After creating and obtaining the necessary information about the sender, you

need to determine whether the client is registered in the Nova Poshta system. To do

this, a search is made in the list of contractors, and if such a person exists, then we

get a link ID from the list. If there is no such person – then we create a new

recipient. In the next step we get a list of contact persons of the recipient, or

register a contact person, in case of creating a new recipient.

The following three blocks are sent to search in the lists of addresses: cities,

streets, houses, apartments of the recipient.

Then there is the creation of an Internet document of the consignment note

and its printing [12].

21

ApiKey, Name, Last name, Middle name

Phone, Email, City, Street

House, Flat, Comment

Get sender

Get sender`s contact

person

Get recepient

Get recepient`s

contact person

Does recepient

exists?

Create recepient

Get city

Get street

Get adress

Create Internet

document

Print Internet

document

No

Yes

Internet document

Registe recepient`s

contact person

Figure 2.2 – Block diagram of the algorithm for creating an Internet document of

the consignment note

22

The next part of the software module is tracking the status of the shipment.

List of parsels, delivery

date,

delivery statuses

Check delivery status

Perform return

< 7 days

yes

no

Update status

List of parsels with

delivery statuses

Figure 2.3 – Block diagram of the algorithm for tracking the status of the parcel

and registration of auto-return of the parcel

Considering the algorithm for tracking the status of parcels, we note that the

login includes a list of items marked with the date of departure, date of arrival at

the branch, the date when the parcel must be picked up by the customer and the

status of the parcel. Statuses can contain information about the location of the

parcel and the approximate date of delivery, a mark of arrival at the branch, a mark

of receipt of the shipment, a change of address, the date of receipt of the shipment,

the termination of free storage [13].

23

The program must determine whether the term of free storage of the parcel

has been exceeded (up to 7 days), and in case of exceeding this term – registration

of auto-return.

To ensure the storage of order and delivery information, you need to create a

database table that will store all the information. The structure of the table is

described in table 2.1.

Table 2.1 – The structure of the database table [14]

№ Name datatype Null Additional Purpose

1 id int(10) not null auto increment primary key

2 name char(100) not null – Client`s name

3 surname char(100) not null – Client`s surname

4 middleName char(100) not null – Client`s middleName

5 phone char(100) not null – Client`s phone

6 eMail char(100) null – Client`s eMail

7 city char(100) Null – Client`s city

8 street char(100) null – Client`s street

9 building char(100) null – Client`s building

10 apartment char(100) null – Client`s apartment

11 purchaseId char(100) null – Number of purchase

12 status char(100) null – Order status

13 ttn char(100) null – Order invoice reference

14 dateSent DateTime null – Date mail sent

15 deliveryDate DateTime null – Date mail delivered

16 deliveryStatus char(100) null – Delivery status

2.2 Selecting of implementation technology

The prototype is a module of an existing web-based information system.

Based on the analysis of existing solutions for automation of mail management, it

would be wise to choose the client-server architecture used by web applications.

This architecture will allow you to process operations directly on the server, which

will ensure the efficiency and security of the application.

The most common and advanced client-server architecture is three-tier. The

architecture model is divided into three parts: client, server, and database server.

The first level (thin client) – the client which is presented by a graphic

component and provides dialogue of the user with system. Users in the designed

system are employees of the financial monitoring department of the bank.

24

Important for the first level is the functionality of the user when interacting with

the system. It is necessary to clearly regulate the operations that can be performed

by the user, what data can be entered and what the user sees as a result of the

system.

The second level is represented by the application server (application server)

– at this level is stored in compliance with business rules. Here is all the logic of

the program. The server provides data processing from the client, generating

queries to the database, processing the received data and presenting them to the

user.

The third level is a database server that provides data storage, including their

consistent conversion and protection against unauthorized adjustments. Also at this

level is the function of data protection and backup [19].

Among the technologies that provide a three-tier architecture, we will focus

on the Django framework of the Python programming language.

The advantages of development on Django include the principle of “All

Inclusive” (“Batteries included”). The phrase “all-inclusive” means that most of

the tools for creating a program are part of the framework, and do not come as

separate libraries.

Django contains a huge amount of functionality to solve most web

development tasks.

Django supports:

– Object Related Mapping;

– Database migrations;

– User authentication;

– Admin panel;

– Forms;

– Standardized structure.

Django as a framework sets the structure of the project. It helps developers

understand where and how to add new functionality [15].

25

Thanks to the same structure for all projects, it is much easier to find ready-

made solutions or get help from the community. A huge number of enthusiastic

developers will help to cope with any task much faster [16].

Django applications allow you to divide a project into several parts. Add-ons

are installed by adding to settings.INSTALLED_APPS. This approach makes it

easy to integrate ready-made solutions [17].

Hundreds of universal modules and applications will greatly accelerate

development.

For coding is better to use Visual Studio Code software [20]. The basic

version of Python – 3.9.5 [21]

2.3 Developing the prototype of the postal management module

Prototype development begins with setting up the environment, creating a

project and related files.

Figure 2.3 shows the structure of the Django project. The migrations folder

stores a description of the changes made to the database. The “templates” folder

contains a list of templates used by the module. Files “forms.py”, “models.py”,

“urls.py”, “views.py” contain classes and functions that describe forms, database

table, list of pages and binding handlers to them, handler functions pages

respectively [18].

The “settings.py” file includes the general settings of the project. File

“db.sqlite3” – saves the database. The file “manage.py” is responsible for starting

the project [22].

26

Figure 2.4 – Project structure

First we configure the pages we need. Figure 2.5 shows the pages involved

in the project.

27

Figure 2.5 – Project pages

Pages “index”, “order”, “catalog”, “finish” – service pages, which in the

prototype of the system are responsible for integration with the general website.

Page “manager” – contains a list of orders and all information about orders and

shipments.

The next step is to create a database. In the file “models.py” we define with

the help of the Orders class the corresponding structure of the database [24]. The

appearance of the file “models.py” is shown in Figure 2.6.

Figure 2.6 – Database structure

28

In Django, the database is implemented by creating classes that are

descendants of the ancestor class “models.Model”. Table columns are attributes of

a class. Class attributes are defined using appropriate methods, according to data

types: CharField () – for text fields, DateTimeField () – for fields that contain time

and date information. The “id” field, which acts as the primary key and has the

“autoincrement” property, is created automatically by the framework. You can use

method attributes to control the validity of empty values, set the maximum field

length, or set default values [25].

The interface with customers is supported by interactive forms. In Django

the forms are placed in the file “forms.py” in the form of classes. Classes are

created as descendants of the “forms.Form” class, in which attributes, by analogy

with models, are methods that return objects. Method attributes specify the

maximum field length, field name, interactive widget (such as dropdownlist), or

hidden fields. An example of a class for creating a shape is shown in Figure 2.7.

Figure 2.7 – Form for creating an order

29

The form is integrated into the html template using the Order class variable

and the csrf_token certificate, which is responsible for the security of the

transmitted data. Integration into the html-template is shown in Figure 2.8.

Figure 2.8 – Integration of the form into the html-template

The views.py file contains site page handlers. To implement the required

functionality, you must use the following modules of the Django framework and

the actual Python language [35, 36, 37, 38, 39, 40]:

− from django.shortcuts import render

− from django.http import HttpResponse

− from django.contrib.auth import authenticate

− from django.http import HttpResponseRedirect

− from django.conf import settings

− from datetime import datetime, timedelta

− import http.client

− import requests

− import json

− from .forms import DeleteOrder, DeclineOrder, Order

− from .forms import changeStatus

30

− from .forms import Product

− from .models import Orders

Modules “render”, “Httpesponse”, “HttpResponseRedirect”, “authenticate”,

“settings”, “http.client”, “requests” – are responsible for the operation of the

project, displaying information on the interface, data transfer through variables in

the template and receiving http requests . Modules “datetime”, “timedelta” –

necessary for working with timers and date. Json module – implements the ability

to transfer data to the API and receive data from the API in json format. Modules

“DeleteOrder”, “DeclineOrder”, “Order”, “ChangeStatus”, “Product”, “Orders” –

connect the appropriate forms and models to the file “views.py” [23, 32].

Processing of the order form is implemented by the finish (request) method.

This method takes as an argument the request received from the html-form [33,

34].

The method has the following structure:

def finish(request):

 if request.method == 'POST':

 form = Order(request.POST)

 if form.is_valid():

 new_order = Orders(name = form.cleaned_data['name'],

 surname = form.cleaned_data['surname'],

 phone = form.cleaned_data['phone'],

 payment = form.cleaned_data['payment'],

 delivery = form.cleaned_data['delivery'],

 city = form.cleaned_data['city'],

 postbr = form.cleaned_data['postbr'],

 street = form.cleaned_data['street'],

 building = form.cleaned_data['building'],

 apartment = form.cleaned_data['apartment'],

 comment = form.cleaned_data['comment'],

 purchaseId = form.cleaned_data['purchaseId'],

 status = '1')

 new_order.save()

 return render(request, 'finish.html', {'Thank': "Thanks \n our manager will contact you"})

 else:

 form = Order()

 return render(request, 'order.html', {'form': form, 'id':'vvv'})

Code Listing 2.1 – Code method for processing the form and writing order

information to the database

31

In addition to filling in the fields of the database table obtained from the

form, the status is set to – 1, which corresponds to the new order [31].

The dialogue with the API is implemented using the post() methods of the

“requests” module and loads() [26] of the “json” module.

Figure 2.9 shows an example of a Counterparty query to create a new sender

object.

Figure 2.9 – Example of a query to the Counterparty model

Lines 272-288 form the request body in json format. Line 273 contains the

apiKey generated for the company by the Nova Poshta system and identifies it.

Line 281 generates a request to the API method post(). Line 282 receives the

content of the request. Then the content is transformed into a dictionary from the

json format. The last step is to get the Ref ID of the entire response array [27, 30].

After making a number of such requests (Appendix B), the following request

is generated (Listing 2.2).

params1 ={

 "apiKey": "aa4e0992ea5446acbef2a12f8a4328b4",

 "modelName": "InternetDocument",

 "calledMethod": "save",

 "methodProperties": {

 "PayerType": "Sender",

 "PaymentMethod": "Cash",

 "DateTime": date,

 "CargoType": "Cargo",

32

 "VolumeGeneral": "0.1",

 "Weight": "10",

 "ServiceType": "WarehouseDoors",

 "SeatsAmount": "1",

 "Description": "Oxygen3000",

 "Cost": "500",

 "CitySender": "8d5a980d-391c-11dd-90d9-001a92567626",

 "Sender": countr_ref,

 "SenderAddress": "01ae2635-e1c2-11e3-8c4a-0050568002cf",

 "ContactSender": countr_cont_full_ref,

 "SendersPhone": countr_cont_full_phones,

 "CityRecipient": get_city_full_ref,

 "Recipient": new_recepient_full_ref,

 "RecipientAddress": get_adress_ref,

 "ContactRecipient": get_cont_recepient_full_ref,

 "RecipientsPhone": get_cont_recepient_full_phones

 }

 }

Code Listing 2.2 – Request for the formation of the consignment note [28]

This request indicates the date of creation, type of delivery, type of goods,

identifiers of the sender, recipient, contact persons of the sender and recipient,

delivery address, telephone numbers of contact persons.

The result of the request – created identifier express invoice. Next, the

specified ID is added to the string

https://my.novaposhta.ua/orders/printDocument/orders[]/a01e801c-cef0-11eb-

8513-b88303659df5/orders[]/a01e801c-cef0-11eb-8513-

b88303659df5/type/pdf/apiKey/aa4e0992ea5446acbef2a12f8a4328b4, after which

it can be printed.

Then all the information is recorded in the database and transmitted to the

manager interface using function manager (response). The program code is given

in appendix B [29].

33

2.4 Reference example and instructions for use

On the company's website, the customer adds the product to the cart, fills out

the form with their contact information. View of the form in the Figure 2.10.

Figure 2.10 – Form for filling in delivery information

After filling out the form, the client displays the message “Thanks, our

manager will contact you”.

In his personal account, the manager sees a list of orders and detailed

information about the shipment, shown in Figure 2.11

As can be seen in Figure 2.11, columns 1-5 are filled in by the customer

when ordering. The manager receives a list of orders, new orders are displayed

34

marked “New” in the column “status”. Order information with its quantity is

displayed in the “purchase Id” column.

Figure 2.11 – View of the List of orders on the manager page

After the manager confirms the order from the customer, he clicks on the

Approve button and changes the status of the order to “Approved”. In case of order

cancellation – the manager can click “Decline” and cancel it, the status changes to

“Declined”. If necessary, the “Delete” button deletes the order from the list.

When you click the “Approved” button, an Internet document is

automatically generated – a consignment note, which becomes available for

printing by following the link in the “TTN” column.

The view of the consignment note is shown in Figure 2.12.

After creating an Internet document of the consignment note, the manager

prints it out and forms a parcel with the goods. After that, all he has to do is take

the parcels to the Nova Poshta branch and send them.

After sending parcels using a request to the API, the program will update the

date of departure (12th column of Figure 2.11) and change the delivery status (14th

column of Figure 2.11).

The program tracks the storage time of 7 days from the date of delivery, and

if such time has expired, the status in the 14th column changes to “Return”. In the

implemented prototype, the data cells are empty, because the APIN New Mail

works in real time, and the prototype needs to run and send real parcels to

demonstrate the appropriate functionality.

35

Figure 2.12 – View of the Internet document of the consignment note

36

CONCLUSIONS

The importance of process automation in our time is difficult to

overestimate. The use of computer technology simplifies the functioning of both

individual processes of the organization and the entire work of the company as a

whole.

During the qualifying bachelor's thesis, the peculiarities of automation of the

process of managing postal items at the enterprise were investigated. The analysis

of existing solutions of automation of postal items is carried out. Based on the

analysis, the basic requirements for the mail management system at the enterprise

were identified and formed.

As a result, a prototype of the web-oriented automated mail management

system module at Oxygen 3000 LLC was designed and implemented.

According to the tasks, there were:

− Oxygen 3000 LLC was characterized as an object of research and the

state of business process automation was analyzed;

− the analysis of existing on the market of postal services and their decision

of automation of registration of postal deliveries is carried out;

− formed requirements for web-based system;

− design of the architecture of the prototype module of postal subdivisions;

− selected technology prototype development: Django framework, Python

programming language;

− a prototype of an automated system of postal corrections was developed;

− developed a control example with instructions for use.

Prospects for further automation activities of LLC “Oxygen 3000” are to

expand the ability to pay online for the ordered goods. In addition, it is possible to

upgrade an existing web system to meet modern requirements.

37

REFERENCES

1. Кисень для дихання: веб-сайт. URL: https://oxygen3000.com/uk/

(дата звернення 10.06.2021)

2. Портал для розробників API Нова Пошта: веб-сайт. URL:

https://devcenter.novaposhta.ua/ (дата звернення 10.06.2021)

3. Укрпошта: веб-сайт. URL: https://ukrposhta.ua/ua (дата звернення

10.06.2021)

4. Логістична компанія Інтайм: веб-сайт. URL: https://intime.check-

track.com/ua/ (дата звернення 10.06.2021)

5. Група компаній «Делівері»: веб-сайт. URL: https://www.delivery-

auto.com/uk-UA/Home/Index (дата звернення 10.06.2021)

6. Група компаній «Meest»: веб-сайт. URL: https://ua.meest.com/ (дата

звернення 10.06.2021)

7. Автолюкс Глобал Пост: веб-сайт. URL: https://autolux-post.com.ua/

(дата звернення 10.06.2021)

8. ТОВ «Зручна Доставка»: веб-сайт. URL: http://zruchnadostavka.com/

(дата звернення 10.06.2021)

9. Delfast: website. URL: https://kiev.delfast.co/en/ (date accessed

10.06.2021)

10. Бізнес-кабінет Нова Пошта: веб-сайт. URL:

https://new.novaposhta.ua/create (дата звернення 10.06.2021)

11. Документація API Нова Пошта: веб-сайт. URL:

https://devcenter.novaposhta.ua/docs/services/ (дата звернення 10.06.2021)

12. Zingaro D. Algorithmic thinking: a problem-based introduction. San

Francisco: No starch press, 2021. 410 p. URL: https://dokumen.pub/algorithmic-

thinking-a-problem-based-introduction-1nbsped-9781718500808-9781718500815-

1718500807.html (date accessed 10.06.2021)

https://oxygen3000.com/uk/
https://devcenter.novaposhta.ua/
https://kiev.delfast.co/en/
https://new.novaposhta.ua/create
https://devcenter.novaposhta.ua/docs/services/

38

13. Erickson J. Algorithms, 2019. 472 p. URL:

https://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf (date

accessed 10.06.2021)

14. Kreibich J.A. Using SQLite. O`Reily press, 2010. 503 p. URL:

https://allitbooks.net/programming/5373-using-sqlite.html (date accessed

10.06.2021)

15. Django documentation: website. URL:

https://docs.djangoproject.com/en/3.2/ (date accessed 10.06.2021)

16. Sedhain S. Web framework for Python: Django, 2006. 190 p. URL:

https://www.programmer-books.com/wp-content/uploads/2018/08/Django-Book-

Web-framework-for-Python.pdf (date accessed 10.06.2021)

17. Forcier J., Bissex P., Chun W. Python Web Development with Django.

Pearson Education inc, 2009. 405 p. URL: https://freepdf-

books.com/download/?file=4536 (date accessed 10.06.2021)

18. Dauzon S., Bendoraitis A., Ravindran A. Django: Web Development

with Python. Birmingham: Packt Publishing Ltd, 2016. 717 p. URL:

http://englishonlineclub.com/pdf/Django%20-

%20Web%20Development%20with%20Python%20(Learning%20Path)%20[Engli

shOnlineClub.com].pdf (date accessed 10.06.2021)

19. Three Level Architecture of Database: tuorialspoint website. URL:

https://www.tutorialspoint.com/Three-Level-Architecture-of-Database (date

accessed 10.06.2021)

20. Visual Studio Code: website. URL: https://code.visualstudio.com/ (date

accessed 10.06.2021)

21. Python: website. URL: https://www.python.org/ (date accessed

10.06.2021)

22. Django: The web framework for perfections with deadlines: website.

URL: https://www.djangoproject.com/ (date accessed 10.06.2021)

https://docs.djangoproject.com/en/3.2/
https://code.visualstudio.com/
https://www.python.org/

39

23. Writing views: website. URL:

https://docs.djangoproject.com/en/3.2/topics/http/views/ (date accessed

10.06.2021)

24. Stratton J. Django: Beyond the SQL: website. URL: https://www.pdf-

tutorial.com/database/749-django-beyond-the-sql (date accessed 10.06.2021)

25. Django Web Development in Python: website. URL:

https://www.datacamp.com/community/tutorials/web-development-django (date

accessed 10.06.2021)

26. McKinney W. Python for Data Analysis. O`Reilly, 2013. 470 p. URL:

https://bedford-computing.co.uk/learning/wp-content/uploads/2015/10/Python-for-

Data-Analysis.pdf (date accessed 10.06.2021)

27. Python Notes for Professionals: website. URL:

https://books.goalkicker.com/PythonBook/ (date accessed 10.06.2021)

28. Shaw Z. Learn Python the hard way: a very simple introduction to the

terrifyingly beautiful world of computers and code. Crawfordsville: Addison-

Wesley, 2014. 306 p. URL: https://learntocodetogether.com/learn-python-the-hard-

way-free-ebook-download/ (date accessed 10.06.2021)

29. McKinney W. Pandas: powerful Python data analysis toolkit, 2021.

3325 p. URL: https://pandas.pydata.org/docs/pandas.pdf (date accessed

10.06.2021)

30. Learning Django: free unaffiliated eBook created from Stack Overflow

contributors. 228 p. URL: https://riptutorial.com/Download/django.pdf (date

accessed 10.06.2021)

31. Документация Django: веб-сайт. URL: https://djbook.ru/rel3.0/ (date

accessed 10.06.2021)

32. Gorelick M., Ozsvald I. (2014) High Performance Python. O`Reilly

Media, 370 p. ISBN: 978-1-449-36159-4

33. Lutz M. (2013) Learning Python, Fifth Edition. O`Reilly Media, 1594 p.

ISBN: 978-1-449-35573-9

https://docs.djangoproject.com/en/3.2/topics/http/views/
https://www.datacamp.com/community/tutorials/web-development-django
https://bedford-computing.co.uk/learning/wp-content/uploads/2015/10/Python-for-Data-Analysis.pdf
https://bedford-computing.co.uk/learning/wp-content/uploads/2015/10/Python-for-Data-Analysis.pdf
https://books.goalkicker.com/PythonBook/
https://learntocodetogether.com/learn-python-the-hard-way-free-ebook-download/
https://learntocodetogether.com/learn-python-the-hard-way-free-ebook-download/
https://pandas.pydata.org/docs/pandas.pdf
https://riptutorial.com/Download/django.pdf
https://djbook.ru/rel3.0/

40

34. Лутц M. (2019) Изучаем Python, том 1, 5-е изд.: Пер. с англ. СПб.:

ООО “Диалектика”, 2019. 832 с.

35. Downey A. (2016) Think Complexity. URL:

https://github.com/AllenDowney/ThinkComplexity2 (date accessed 10.06.2021)

36. Златопольский Д.М. Основы программирования на языке Python. –

М.: ДМК Пресс, 2017. 284 с.

37. Лутц М. Программирование на Python, том I, 4-е издание. – Пер. с

англ. СПб.: Символ-Плюс, 2011. 992 с.

38. Лутц М. Программирование на Python, том II, 4-е издание. – Пер. с

англ. СПб.: Символ-Плюс, 2011. 992 с.

39. Requests: HTTP for Humans: website. URL: https://docs.python-

requests.org/en/master/ (date accessed 10.06.2021)

40. Basic date and time types: website. URL:

https://docs.python.org/3/library/datetime.html (date accessed 10.06.2021)

https://docs.python-requests.org/en/master/
https://docs.python-requests.org/en/master/

41

APPENDICES

Appendix A

SUMMARY

Lebedeva Yu. V. Automation of the retail trade at the enterprise. Qualifying

work of the bachelor. Sumy State University, Sumy, 2021.

The process of creating a prototype of an automated module for managing

postal items at the enterprise is investigated. An analysis of postal services that

provide their services in Ukraine. The prototype database was designed,

algorithmic software was determined. A prototype of an automated mail

management system at the enterprise has been implemented.

Keywords: automation, mailings, Nova Poshta API, programming, Django

framework.

АНОТАЦІЯ

Лебедева Ю. В. Автоматизація поштових відправлень на підприємстві

роздрібної торгівлі. Кваліфікаційна робота бакалавра. Сумський державний

університет, Суми, 2021 р.

У роботі досліджено процес створення прототипу автоматизованого

модулю управління поштовими відправленнями на підприємстві. Проведено

аналіз поштових сервісів, які надають свої послуги в Україні. Було

спроектовано базу даних прототипу, визначено алгоритмічне забезпечення.

Реалізовано прототип автоматизованої системи управління поштовими

відправленнями на підприємстві.

Ключові слова: автоматизація, поштові відправління, API Нова Пошта,

програмування, Django фреймворк.

42

Appendix B

Program code

models.py

from django.db import models

class Orders(models.Model):

 name = models.CharField(max_length=100)

 surname = models.CharField(max_length=100)

 middleName = models.CharField(max_length=100)

 phone = models.CharField(max_length=100)

 eMail = models.CharField(max_length=100)

 city = models.CharField(max_length=100)

 street = models.CharField(max_length=100, null=True)

 building = models.CharField(max_length=100, null=True)

 apartment = models.CharField(max_length=100, null=True)

 comment = models.CharField(max_length=100, null=True)

 purchaseId = models.CharField(max_length=100,null=True)

 status = models.CharField(max_length=10,null=True)

 ttn = models.CharField(max_length=100,null=True)

 dateSent = models.DateTimeField(null=True)

 deliveryDate = models.DateTimeField(null=True)

 deliveryStatus = models.CharField(max_length=100,null=True)

forms.py

from django import forms

PAYMENT_CHOICES= [

 ('online', 'Online'),

 ('cash', 'Cash')

]

DELIVERY_CHOICES= [

 ('self', 'Self'),

 ('courier', 'Courier')

]

class Order(forms.Form):

 name = forms.CharField(label='name', max_length=100)

 surname = forms.CharField(label='surname', max_length=100)

 phone = forms.CharField(label='phone', max_length=100)

 payment = forms.CharField(label='payment', widget=forms.Select(choices=PAYMENT_CHO

ICES))

 delivery = forms.CharField(label='delivery', widget=forms.Select(choices=DELIVERY_CHO

ICES))

 city = forms.CharField(label='city', max_length=100)

 postbr = forms.CharField(label='postbr', max_length=100)

 street = forms.CharField(label='street', max_length=100)

 building = forms.CharField(label='building', max_length=100)

 apartment = forms.CharField(label='apartment', max_length=100)

43

 comment = forms.CharField(label='Add comment', max_length=100)

 purchaseId = forms.CharField(widget=forms.HiddenInput())

class Product(forms.Form):

 pr_id = forms.CharField(label='Product', max_length=100)

class changeStatus(forms.Form):

 approve = forms.CharField(widget=forms.HiddenInput())

class DeclineOrder(forms.Form):

 decline = forms.CharField(widget=forms.HiddenInput())

class DeleteOrder(forms.Form):

 delete = forms.CharField(widget=forms.HiddenInput())

urls.py

from django.contrib import admin

from django.urls import path

from django.conf.urls import include, url

import postalApp.views

urlpatterns = [

 path('admin/', admin.site.urls),

 url(r'^$', postalApp.views.index, name='index'),

 url(r'^order$', postalApp.views.order, name='order'),

 url(r'^catalogue$', postalApp.views.catalogue, name='catalogue'),

 url(r'^finish$', postalApp.views.finish, name='finish'),

 url(r'^manager$', postalApp.views.manager, name='manager'),

]

Settings.py

from pathlib import Path

Build paths inside the project like this: BASE_DIR / 'subdir'.

BASE_DIR = Path(__file__).resolve().parent.parent

Quick-start development settings - unsuitable for production

See https://docs.djangoproject.com/en/3.2/howto/deployment/checklist/

SECURITY WARNING: keep the secret key used in production secret!

SECRET_KEY = 'django-insecure-@+lu_ydf!z0k_$&0&ibmpioy-

&@u*$&@2#vp9#8_f&q&=8g&sw'

SECURITY WARNING: don't run with debug turned on in production!

DEBUG = True

ALLOWED_HOSTS = []

Application definition

INSTALLED_APPS = [

 'django.contrib.admin',

 'django.contrib.auth',

 'django.contrib.contenttypes',

 'django.contrib.sessions',

 'django.contrib.messages',

 'django.contrib.staticfiles',

 'postalApp',

]

MIDDLEWARE = [

 'django.middleware.security.SecurityMiddleware',

 'django.contrib.sessions.middleware.SessionMiddleware',

44

 'django.middleware.common.CommonMiddleware',

 'django.middleware.csrf.CsrfViewMiddleware',

 'django.contrib.auth.middleware.AuthenticationMiddleware',

 'django.contrib.messages.middleware.MessageMiddleware',

 'django.middleware.clickjacking.XFrameOptionsMiddleware',

]

ROOT_URLCONF = 'postalApp.urls'

TEMPLATES = [

 {

 'BACKEND': 'django.template.backends.django.DjangoTemplates',

 'DIRS': [],

 'APP_DIRS': True,

 'OPTIONS': {

 'context_processors': [

 'django.template.context_processors.debug',

 'django.template.context_processors.request',

 'django.contrib.auth.context_processors.auth',

 'django.contrib.messages.context_processors.messages',

],

 },

 },

]

WSGI_APPLICATION = 'postalApp.wsgi.application'

Database

https://docs.djangoproject.com/en/3.2/ref/settings/#databases

DATABASES = {

 'default': {

 'ENGINE': 'django.db.backends.sqlite3',

 'NAME': BASE_DIR / 'db.sqlite3',

 }

}

Password validation

https://docs.djangoproject.com/en/3.2/ref/settings/#auth-password-validators

AUTH_PASSWORD_VALIDATORS = [

 {

 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator',

 },

 {

 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator',

 },

 {

 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator',

 },

 {

 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator',

 },

]

Internationalization

https://docs.djangoproject.com/en/3.2/topics/i18n/

LANGUAGE_CODE = 'en-us'

TIME_ZONE = 'UTC'

45

USE_I18N = True

USE_L10N = True

USE_TZ = True

Static files (CSS, JavaScript, Images)

https://docs.djangoproject.com/en/3.2/howto/static-files/

STATIC_URL = '/static/'

Default primary key field type

https://docs.djangoproject.com/en/3.2/ref/settings/#default-auto-field

DEFAULT_AUTO_FIELD = 'django.db.models.BigAutoField'

migrations

from django.db import migrations, models

class Migration(migrations.Migration):

 initial = True

 dependencies = [

]

 operations = [

 migrations.CreateModel(

 name='Orders',

 fields=[

 ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, ver

bose_name='ID')),

 ('name', models.CharField(max_length=100)),

 ('surname', models.CharField(max_length=100)),

 ('phone', models.CharField(max_length=100)),

 ('payment', models.CharField(max_length=100)),

 ('delivery', models.CharField(max_length=100)),

 ('city', models.CharField(max_length=100)),

 ('postbr', models.CharField(max_length=100, null=True)),

 ('street', models.CharField(max_length=100, null=True)),

 ('building', models.CharField(max_length=100, null=True)),

 ('apartment', models.CharField(max_length=100, null=True)),

 ('comment', models.CharField(max_length=100, null=True)),

 ('purchaseId', models.CharField(max_length=100, null=True)),

],

),

]

Generated by Django 3.2 on 2021-06-13 22:01

from django.db import migrations, models

class Migration(migrations.Migration):

 dependencies = [

 ('postalApp', '0001_initial'),

]

 operations = [

 migrations.AddField(

 model_name='orders',

 name='status',

 field=models.CharField(max_length=10, null=True),

),

]

from django.db import migrations, models

46

class Migration(migrations.Migration):

 dependencies = [

 ('postalApp', '0002_orders_status'),

]

 operations = [

 migrations.AddField(

 model_name='orders',

 name='ttn',

 field=models.CharField(max_length=100, null=True),

),

]

order_list.html

<html>

<head><title></title></head>

<body>

<style>

 table {

 width: 100%; /* Ширина таблицы */

 border: 4px double black; /* Рамка вокруг таблицы */

 border-collapse: collapse; /* Отображать только одинарные линии */

 }

 th {

 text-align: left; /* Выравнивание по левому краю */

 background: #ccc; /* Цвет фона ячеек */

 padding: 5px; /* Поля вокруг содержимого ячеек */

 border: 1px solid black; /* Граница вокруг ячеек */

 }

 td {

 padding: 5px; /* Поля вокруг содержимого ячеек */

 border: 1px solid black; /* Граница вокруг ячеек */

 width:50px;

 }

</style>

<table>

 <tr >

 <td>name</td>

 <td>surname</td>

 <td>middleName</td>

 <td>phone</td>

 <td>Adress</td>

 <td>purchaseId</td>

 <td>status</td>

 <td>Approve</td>

 <td>Decline</td>

 <td>Delete</td>

 <td>TTN</td>

 <td>DateSent</td>

 <td>DateReceived</td>

 <td>Delivery Status</td>

47

 </tr>

 {% for order in content %}

 <tr>

 <td>{{order.name}}</td>

 <td>{{order.surname}}</td>

 <td>{{order.phone}}</td>

 <td>{{order.city}}</td>

 <td>{{order.purchaseId}}</td>

 <td>{% if order.status == "1"%}

 <div>New</div>

 {% elif order.status == "2"%}

 <div>Approved</div>

 {% elif order.status == "3"%}

 <div>Declined</div>

 {%endif%}

 </td>

 <td>

 <form method="post" action="/manager">

 {% csrf_token %}

 <input type="hidden" name="approve" value="{{ order.id }}">

 <input type="submit" value="Approve">

 </form>

 </td>

 <td>

 <form method="post" action="/manager">

 {% csrf_token %}

 <input type="hidden" name="decline" value="{{ order.id }}">

 <input type="submit" value="Decline">

 </form>

 </td>

 <td>

 <form method="post" action="/manager">

 {% csrf_token %}

 <input type="hidden" name="delete" value="{{ order.id }}">

 <input type="submit" value="Delete">

 </form>

 </td>

 <td>

 {% if order.ttn != None%}

 <a href="https://my.novaposhta.ua/orders/printDocument/orders[]/{{order.ttn}}/orders[]/

{{order.ttn}}/type/pdf/apiKey/aa4e0992ea5446acbef2a12f8a4328b4" target="_blank">open ttn<

/a>

 {%endif%}

 </td>

 </tr>

 {% endfor %}

</table>

</body>

</html>

48

Views.py

from django.shortcuts import render

from django.http import HttpResponse

from django.shortcuts import render

from django.contrib.auth import authenticate

from django.http import HttpResponseRedirect

from django.conf import settings

from datetime import datetime, timedelta

import http.client

import requests

import json

from .forms import DeleteOrder, DeclineOrder, Order

from .forms import changeStatus

from .forms import Product

from .models import Orders

def index(request):

 pass

def order(request):

 if request.method == 'POST':

 form = Product(request.POST)

 if form.is_valid():

 pr_id = form.cleaned_data['pr_id']

 form1 = Order()

 form1.fields['purchaseId'].initial = pr_id

 return render(request, 'order.html', {'form': form1})

 else:

 form = Order()

 return render(request, 'order.html', {'form': form})

def catalogue(request):

 form = Product()

 return render(request, 'catalogue.html', {'form': form})

def finish(request):

 if request.method == 'POST':

 form = Order(request.POST)

 if form.is_valid():

 new_order = Orders(name = form.cleaned_data['name'],

 surname = form.cleaned_data['surname'],

 phone = form.cleaned_data['phone'],

 payment = form.cleaned_data['payment'],

 delivery = form.cleaned_data['delivery'],

 city = form.cleaned_data['city'],

 postbr = form.cleaned_data['postbr'],

 street = form.cleaned_data['street'],

 building = form.cleaned_data['building'],

 apartment = form.cleaned_data['apartment'],

 comment = form.cleaned_data['comment'],

 purchaseId = form.cleaned_data['purchaseId'],

 status = '1')

 new_order.save()

 return render(request, 'finish.html', {'Thank': "Thanks \n our manager will contact you"})

 else:

49

 form = Order()

 return render(request, 'order.html', {'form': form, 'id':'vvv'})

def manager(request):

 appr = changeStatus()

 orders = Orders.objects.all()

 decline = DeclineOrder()

 delete = DeleteOrder()

 if request.method == 'POST':

 apprf = changeStatus(request.POST)

 declinef = DeclineOrder(request.POST)

 deletef = DeleteOrder(request.POST)

 if apprf.is_valid():

 new_appr = apprf.cleaned_data['approve']

 Orders.objects.filter(id=new_appr).update(status="2")

 client = Orders.objects.filter(id=new_appr).values()[0]

 gg = client['surname']

 ttn =create_ttn(client['name'],"Лебедева")

 Orders.objects.filter(id=new_appr).update(ttn=ttn)

 return render(request, "order_list.html", {'content': orders,"gg":gg})

 elif declinef.is_valid():

 decline = declinef.cleaned_data['decline']

 Orders.objects.filter(id=decline).update(status="3")

 return render(request, "order_list.html", {'content': orders})

 elif deletef.is_valid():

 delete = deletef.cleaned_data['delete']

 Orders.objects.filter(id=delete).delete()

 return render(request, "order_list.html", {'content': orders})

 else:

 return render(request, "order_list.html", {'content': orders})

def create_ttn(name,lastname):

 countr = {

 "apiKey": "aa4e0992ea5446acbef2a12f8a4328b4",

 "modelName": "Counterparty",

 "calledMethod": "getCounterparties",

 "methodProperties": {

 "CounterpartyProperty": "Sender",

 "Page": "1"

 }

 }

 response = requests.post('https://api.novaposhta.ua/v2.0/json/', json=countr)

 content = response.content

 countr_full = json.loads(content)

 countr_ref = countr_full['data'][0]['Ref']

 countr_contact_pers = {

 "apiKey": "aa4e0992ea5446acbef2a12f8a4328b4",

 "modelName": "Counterparty",

 "calledMethod": "getCounterpartyContactPersons",

 "methodProperties": {

 "Ref": countr_ref,

 "Page": "1"

 }

50

 }

 response = requests.post('https://api.novaposhta.ua/v2.0/json/', json=countr_contact_pers)

 content = response.content

 countr_cont_full = json.loads(content)

 countr_cont_full_ref = countr_cont_full['data'][0]['Ref']

 countr_cont_full_phones = countr_cont_full['data'][0]['Phones']

 create_recepient = {

 "apiKey": "aa4e0992ea5446acbef2a12f8a4328b4",

 "modelName": "Counterparty",

 "calledMethod": "save",

 "methodProperties": {

 "FirstName": name,

 "MiddleName": "Віталіївна",

 "LastName": lastname,

 "Phone": "0999203721",

 "Email": "",

 "CounterpartyType": "PrivatePerson",

 "CounterpartyProperty": "Recipient"

 }

 }

 response = requests.post('https://api.novaposhta.ua/v2.0/json/', json=create_recepient)

 content = response.content

 new_recepient_full = json.loads(content)

 new_recepient_full_ref = new_recepient_full['data'][0]['Ref']

 #new_recepient_full_phones = new_recepient_full['data'][0]['Phones']

 get_cont_recepient = {

 "apiKey": "aa4e0992ea5446acbef2a12f8a4328b4",

 "modelName": "Counterparty",

 "calledMethod": "getCounterpartyContactPersons",

 "methodProperties": {

 "Ref": new_recepient_full_ref,

 "Page": "1"

 }

 }

 response = requests.post('https://api.novaposhta.ua/v2.0/json/', json=get_cont_recepient)

 content = response.content

 get_cont_recepient_full = json.loads(content)

 get_cont_recepient_full_ref = get_cont_recepient_full['data'][0]['Ref']

 get_cont_recepient_full_phones = get_cont_recepient_full['data'][0]['Phones']

 get_city = {

 "modelName": "Address",

 "calledMethod": "getCities",

 "methodProperties": {

 "FindByString": "Харьков"

 },

 "apiKey": "aa4e0992ea5446acbef2a12f8a4328b4"

 }

 response = requests.post('https://api.novaposhta.ua/v2.0/json/', json=get_city)

 content = response.content

 get_city_full = json.loads(content)

 get_city_full_ref = get_city_full['data'][0]['Ref']

51

 get_street = {

 "modelName": "Address",

 "calledMethod": "getStreet",

 "methodProperties": {

 "CityRef": get_city_full_ref,

 "FindByString": "Сумська"

 },

 "apiKey": "aa4e0992ea5446acbef2a12f8a4328b4"

 }

 response = requests.post('https://api.novaposhta.ua/v2.0/json/', json=get_street)

 content = response.content

 get_street_full = json.loads(content)

 get_street_full_ref = get_street_full['data'][0]['Ref']

 get_adress = {

 "modelName": "Address",

 "calledMethod": "save",

 "methodProperties": {

 "CounterpartyRef": new_recepient_full_ref,

 "StreetRef": get_street_full_ref,

 "BuildingNumber": "7",

 "Flat": "2",

 "Note": "Комментарий"

 },

 "apiKey": "aa4e0992ea5446acbef2a12f8a4328b4"

 }

 response = requests.post('https://api.novaposhta.ua/v2.0/json/', json=get_adress)

 content = response.content

 get_adress_full = json.loads(content)

 get_adress_ref = get_adress_full['data'][0]['Ref']

 date="20.06.2021"

 params1 ={

 "apiKey": "aa4e0992ea5446acbef2a12f8a4328b4",

 "modelName": "InternetDocument",

 "calledMethod": "save",

 "methodProperties": {

 "PayerType": "Sender",

 "PaymentMethod": "Cash",

 "DateTime": date,

 "CargoType": "Cargo",

 "VolumeGeneral": "0.1",

 "Weight": "10",

 "ServiceType": "WarehouseDoors",

 "SeatsAmount": "1",

 "Description": "Oxygen3000",

 "Cost": "500",

 "CitySender": "8d5a980d-391c-11dd-90d9-001a92567626",

 "Sender": countr_ref,

 "SenderAddress": "01ae2635-e1c2-11e3-8c4a-0050568002cf",

 "ContactSender": countr_cont_full_ref,

 "SendersPhone": countr_cont_full_phones,

 "CityRecipient": get_city_full_ref,

 "Recipient": new_recepient_full_ref,

52

 "RecipientAddress": get_adress_ref,

 "ContactRecipient": get_cont_recepient_full_ref,

 "RecipientsPhone": get_cont_recepient_full_phones

 }

 }

 response = requests.post('https://api.novaposhta.ua/v2.0/json/', json=params1)

 content = response.content

 rezult = json.loads(content)

 get_t = rezult['data'][0]['Ref']

 return get_t

