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Numerical calculations of internal fields in multilayer nanostructures composed of magnetic composite
layers and nonmagnetic interlayers were carried out. Systems with bimodal granule size distribution were
examined. Models of such systems were formed by rearrangement and coalescence of granules inside each
layer of a monomodal regular structure while maintaining magnetic particle volume concentration. Mag-
netic fields at the positions of certain granules were calculated as the vector sum of the dipole fields gener-
ated by all the granules in the system. Model parameters corresponded to the characteristics of real multi-
layer composite nanostructures with a magnetic phase content below the percolation threshold. Thus, for a
composite with a granule magnetization of 1250 G, the content of the magnetic phase in the layers was
chosen equal to 13 vol. %. Small particles were 3 nm in size. The calculations were carried out for a differ-
ent number of particle positions in the system (102-107), and it was found that the results of calculations
after exceeding the number of points ~ 105 practically do not change. The intervals between the values of
local fields at various layer points were determined depending on the nonmagnetic interlayer thickness
(from 2 to 4 nm). It was shown that the difference in the values of local dipole fields in a system with the
considered bimodal distribution of granules might amount to ~ 1500 Oe.

Keywords: Composite, Multilayer nanostructure, Magnetic dipole, Internal field, Numerical calculations.

MYPHAJI HAHO- TA EJIEKTPOHHOI ®I3UKH
Tom 13 No 4, 04010(5¢cc) (2021)

DOI: 10.21272/jnep.13(4).04010

1. INTRODUCTION

Nanogranular magnetic systems are considered as
promising materials for microwave electronics. It is found
that granular structures containing ferromagnetic par-
ticles of 3d-metals can exhibit a high degree of absorp-
tion of microwave radiation [1, 2]. Multilayer nanogranu-
lar structures are a separate class of granular systems
consisting of layers in which ferromagnetic nanoparti-
cles are distributed in a dielectric matrix and interlayers
of nonmagnetic dielectric or semiconductor materials.
The characteristics of such systems can be controlled by
changing not only the concentration of the magnetic
phase in the composite layers, but also the thickness of
magnetic layers and nonmagnetic interlayers.

As is known, the magnetic and magnetic resonance
properties of materials (fields of ferromagnetic reso-
nance, resonance line width) are determined by inter-
nal magnetic fields [3]. Therefore, the definition of in-
ternal fields can be useful when considering a wide
range of problems, both fundamental and applied. Cal-
culation of magnetostatic fields for particle ensembles
has been carried out in many papers with the aim of
obtaining analytical expressions for regular systems
(for example, [4]). However, in real systems there are
certain deviations from the ideal models, such as non-
periodic spatial arrangement of particles, different siz-
es and shapes of granules, as well as the type of their
distributions (mono-, bimodal or log-normal) [5-10]. In
addition, due to the long-range nature of the dipole
interaction the results of calculations can also depend
on the size of the simulated system. In this connection,
in some cases numerical calculations of the dipole fields
can be useful for specific systems with parameters that
take into account possible deviations from the ideal
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correct models. Earlier, in [11], we considered the case
of the effect of irregularity in the arrangement of gran-
ules in the layer plane on the values of internal fields
in multilayer structures with different concentrations
of granules in the composite layers. In this paper, we
present the results of numerical calculations of internal
fields in multilayer nanostructures with a bimodal par-
ticle size distribution.

2. MODEL AND CALCULATION FEATURES

The basic simplified model of a multilayer structure
is a stack of several layers with a regular arrangement
of identical granules (Fig. 1). The problem is as follows:
find the magnetic field strength at some point (k) locat-
ed at a distance d vertically from the plane filled with
magnetic dipoles p located at the nodes of a square grid
with side a. The directions of the dipole moments are
the same, which is achieved by applying an external
magnetic field parallel to the plane of the dipoles.

The magnetic field created by all dipoles at a point at
a certain distance from the plane can be written as the
vector sum of the fields created by each particle (mag-
netic dipole) at that point. The distance from the point
to the particle should be greater than the particle size.
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radius vectors of points under study.
Summation is not performed when i = k.
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Fig. 1 — Layout of magnetic dipoles in a layer that creates a
magnetic field at some point in space

Let us consider the case when the plane is above the
particle at height z, the origin of coordinates is placed
at the point where the field will be calculated. The di-
pole coordinates x and y are connected to the side of the
square grid a with integers n and m, that is x = na and
y = ma. The expression under the sum sign in this case
takes the form:
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Accordingly, the projection of the dipole field on the
direction of the external magnetic field (Y) can be writ-
ten as follows:
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To calculate the total projection of the fields at a
certain point of the plane (for example, at the central
point), it is necessary to determine the contributions
from the fields created by granules of adjacent layers
located above and below the layer in question, as well
as granules of the layer itself where this point is locat-
ed. A special program was compiled for field summa-
tion over all points of granule location. As the physical
parameters, the characteristics close to those of real
multilayer systems were used in computation. We con-
sidered the system {[(Cos0Fe10B20)c(Si02)1-]/SiC}» [12]
with a volume concentration of magnetic granules be-
low the percolation threshold ¢ = 13 vol. %. The satura-
tion magnetization of granules Is is 1250 G, the diame-
ter of individual granules D is 3 nm, the thickness of
the nonmagnetic interlayer is 2 and 4 nm. With such
characteristics, the system is in a superparamagnetic
state [13]. A particle state close to a state with a uniform
magnetization distribution is achieved in sufficiently
large fields. In practice, this is possible when studying
ferromagnetic resonance in the microwave range.

It is common knowledge that for a composite film
prepared by simultaneous or sequential evaporation (or
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sputtering) of metallic and dielectric materials, metal
particles located in a dielectric matrix and having a
shape close to spherical are formed. The sizes of such
particles depend on the concentration and the method
of manufacture. Various situations are possible, for
instance, when the granules have practically the same
size [6] or the granule size distribution has a certain
character (log-normal distribution [9, 10], bimodal dis-
tribution [6, 7]). A bimodal distribution can be observed
at metal concentrations approaching the percolation
threshold, when closely spaced finer granules coalesce
into larger complexes. In our work, we will consider a
model corresponding to this case. We carried out the
calculation for a model in which complexes of spherical
granules consisting of five particles were formed from
small spherical granules.
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Fig. 2 - Transition from a simple model of individual granules
(a) to a model with single granules and complexes of granules
(b, ¢). The volume of the magnetic phase is unchanged

The rearrangement of the granules of the basic sys-
tem (Fig. 2a) was carried out in such a way that the
total volume of all particles (large and small) did not
change. At a total concentration of magnetic granules
¢ =13 vol. % the volume of large granule fraction c1 was
9.9 vol. % and the volume of small granule fraction c2
was 3.1 vol. %. As the central point where we calculat-
ed the magnetic field created by all granules of the sys-
tem, we considered either a small granule or an adja-
cent complex of granules. The model scheme is shown
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in Fig. 2c. Materials with such a set of parameters
should have a magnetization curve shown in Fig. 3. The
magnetization curve for separate fractions is shown in
this figure too. Both fractions are superparamagnetic,
and they are described by the Langevin function [13].
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Fig. 3 — The magnetization curve of a granular system consisting
of two subsystems that contain superparamagnetic particles with
different volumes V (the parameters of the subsystems correspond
to the model used to calculate the local dipole fields). 1—
magnetization curve for a subsystem of particles with a diameter
D=3nm, the volume concentration of particles of this fraction
c=3.1vol. %; 2—the magnetization curve for a subsystem of
complexes containing five particles, ¢ = 9.9 vol. %; 3 —the result-
ing curve of the entire system (subsystems 1 and 2),
¢ =13.0 vol. %; 4 — magnetization curve for a system consisting of
identical particles with D =3 nm, ¢ =13.0 vol. %

3. RESULTS AND DISCUSSION

Since the dipole interaction decreases rather quickly
with increasing distance (~ 1/r3), we limited ourselves
to a relatively small number of layers, namely five lay-
ers above the central plane and below it. In this case,
the values of the fields from the distant layers were two
orders of magnitude less than from the neighboring
ones with respect to the point under consideration. The
number of points in one quadrant of each layer was
initially 10 x 13 (see Fig. 2c). The results of calculating
Hysum after rearrangement at a point located under the
central complex of granules depending on the interlay-
er thickness d are shown in Fig. 4, curve 1.

In order to assess the influence of the number of di-
poles on the calculation results, we changed the dimen-
sions of the plane. Initially, with increasing each side of
the plane (by a factor n) significant changes in the val-
ues of Hy were observed. As example, in Fig. 4, curve 2
is shown for n = 30.

Further expansion of the plane did not cause no-
ticeable changes in Hysum (curve 3 in Fig. 4 for n = 300).
The same tendency was observed if the central point
was located in the place of a small granule. In what
follows, we will discuss the results for these last cases,
which correspond to 4 x 107 positions on the plane.

It should be noted that if we place the granule at the
point where we calculate the sum of the dipole fields
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The resulting magnetic moment  in a magnetic field H
is the sum of the magnetic moments of two subsystems,
namely, large granules and small granules.

Here, Vgr1, Voo are the volumes of large and small
particles, respectively, T is the temperature equal to
300 K in the calculation; kB is the Boltzmann constant.
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Fig. 4 — The dipole fields induced by all particles in the loca-
tion of the central granule complex depending on the interlay-
er thickness for various array sizes: curve 1 — the number of
points in one quadrant are 10 x 13; curve 2 — 300 x 390; curve
3 —3000 x 3900

Hysum, then the local field inside the granule will consist
of the external field, demagnetizing field of the particle
itself and the mentioned sum of dipole fields. The Hysum
value is an additive that can be controlled without
changing the concentration of the magnetic phase, but
changing the nature of the particle size distribution.
The example of a bimodal distribution model we have
considered shows how strong the influence of the scat-
ter of particle sizes can be.

Fig. 5 and Table 1 demonstrate the results of calcu-
lations of the component Hysum created by a system of
dipoles in two adjacent positions. As we can see, the
dipole fields Hysum at the points located under individu-
al granules and under the complexes of granules differ
in magnitude and direction of the field. This difference
increases up to ~ 1500 Oe with reducing thickness of a
nonmagnetic interlayer down to 2 nm.

Quantitatively, the additive Hysum can affect the
magnetic and especially the magnetic resonance char-
acteristics of multilayer structures.

As is known, the equation of magnetization motion,
which makes it possible to calculate the frequency of fer-

. M — — 7.
romagnetic resonance % = —y[M ,H ef] includes the so-

called effective field H., which is the sum of fields of dif-
ferent origins: external field, crystallographic anisotropy
field, shape anisotropy field, etc. [14]. If the additive to
the local field associated with the granule dipole fields is
comparable to the fields of other origin and changes from
point to point, a noticeable broadening of the resonance
line of the entire sample should be expected. In our case,
according to calculations, the effect of the dipole sum
and its changes should be significant for the model of
a structure with an interlayer thickness of 2 nm,
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Table 1 — Calculated values of dipole fields in two closely spaced points of a layer of a multilayer composite structure with differ-
ent thickness d of a nonmagnetic interlayer (H,: is the field generated by the granules of adjacent planes, Hy: is the field generat-
ed by the granules of the plane where the point is located, Hysum is the resultant field component along the Y axis)

Point position d=2nm d=4nm
Hyl, Oe Hyz, Oe Hysum, Oe Hyl, Oe HyZ, Oe Hysum, Oe
Under individual granule 28 309 337 61 309 370
Under complex of granules — 1305 154 —1151 — 380 154 — 226
Under granule in monomodal system - 82 369 287 -10 369 359
500 > 4. CONCLUSIONS
V] ]
250 M—— ¥ . The results of numerical calculations of dipole fields in
ol multilayer nanostructures with a bimodal particle size
° distribution are presented. We have considered a model of
O -250f /O a multilayer structure consisting of layers, which are en-
£ /. 3 sembles of regularly spaced magnetic nanogranules of two
anl -500 - ® sizes, and nonmagnetic interlayers. The model parame-
750 1 o / ters corresponded to the characteristics of real multilayer
composite nano-structures with a magnetic phase content
-1000 + / below the percolation threshold. The interlayer thickness
) varied from 2 to 4 nm. In the course of calculations, the
-1250 210 2j5 310 315 410 dimensions of the array of layer points were established,

d,nm

Fig. 5 — Dipole fields induced by all particles in the location of
the central granule of the monomodal system (curve 1), indi-
vidual central granule of the bimodal system (curve 2), and
the central complex of granules (curve 3) of the bimodal sys-
tem as function of the interlayer thickness

since the demagnetizing fields of an individual granule
and a complex of granules have the same order of mag-
nitude as the dipole sum (thousands of Oersteds). For
an interlayer thickness of 4 nm, the contribution of the
dipole sum will be noticeably smaller (see Table 1).
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MaruiTocraTu4yHi moJsia y 6araromapoBrX KOMIIO3UTHHUX IJIIBKax 3 0iMOgaJIbHUM PO3IIOIijIOM
rpa”yJ 3a po3Mmipom

I.T". [Munkosa, 10.1. Beperennirosa, I'.A. Xosogos

Hauiornanvruii mexniurull yrigepcumem «XapKi8CoKUL NOJIMEXHIYHUL ITHCMUumymn,
eyn. Kupnuuosa, 2, 61002 Xapkis, Vkpaina

Buronano yncesbHI po3paxyHKNM BHYTPIIITHIX MOJIIB B 6araTonapoBuX HAHOCTPYKTYPAaX, 10 MICTSATH Ma-
THITHI KOMIIO3UTHI IIapX Ta HEMATHITHI IIpoIIapku. PosryissHyTo cucreMu 3 GIMOIAIBHAM PO3IIOILIOM I'pa-
HyJI 3a poamipoM. Mogesi Takux crcreM 0yJi0 ¢cpopMOBAHO IIJISXOM IIePEeCTPOIBAHHS Ta KOaJIeCIIeHIII] rpa-
HyJI yCEepeIrH]l KOKHOIO 1Iapy MOHOMOIAJIBHOI PEryJIspHOl CTPYKTYPHU IpU 30epeskeHHl 00’ €MHOI KOHIIEHT-
parrii MarHiTHUX YacTHHOK. MAarHiTHI I10JIs B ITO3UINISAX IIEBHUX I'PAHyJI OyJIM PO3PaxoBaHi K BEKTOPHA CY-
Ma JUIIOJIBHUX II0JIIB, CTBOPIOBAHUX I'paHyJiaMu Beiel cucremu. [lapamerpu Mozesti BiqIoBiianyu xapakrepu-
CTHKAM peasIbHUX MYJIbTUIIAPOBUX KOMIIO3UTHUX HAHOCTPYKTYP 13 BMICTOM MATHITHOI (pa3u HHKUYE IOPOTY
nepkoaii. Tak, mis koMmosuTy 3 Hamar"ivenicrio rpamnys 1250 ', Bmict maruiTHol dasu B mapax 0yJio
BubOpaHo piBHUM 13 00. %. Poamipu Maaux yacTHHOK cTaHOBUIM 3 HM. Po3paxyHku OyJio IpOBeIeHO IS Pi-
3HOI KLIBKOCTI TTO3UITiHl YacTUHOK B cucteMi (102-107) Ta BCTAHOBIIEHO, IO PE3yJIBTATH PO3PAXYHKIB IIICIIS
TEePEeBUIIEHHS] YUCJIa TOYOK ~ 105 MpaKTUYHO He 3MIHIITHCA. ByJl0 BU3HAUEHO 1HTEpBAIM 3HAYEHB JIOKA-
JIBHUX IIOJIB ¥ PIBHUX TOYKAX IIAPy B 3aJIEKHOCTI BiJ TOBIIMHU MATHITHOTO mporrapky (Big 2 go 4 um). By-
JI0 TIOKA3aHO, 10 PISHUIH Y BeJMYNHAX JIOKAJIbHUX JUMOJBHUX IIOJIB B CHCTEMI 3 PO3TJISHYTAM 01MOIaiIh-
HOM PO3IIOI1JIOM IpaHyJI Moxke mocsirate ~ 1500 E.

Kirouori ciosa: Kommosur, Bararomaposa nanocrpykrypa, Marsitauit aumoss, Bayrpinse moste, Yuceapai
PO3PaAXYHKHU.
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