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Abstract: Copper oxide thin films were obtained using pulsating spray pyrolysis method. The
morphological, structural, and optical properties of fabricated films were studied. X-ray analysis
revealed that the CuO thin films are single-phase. The study of films morphology by SEM and AFM
methods showed that the obtained films have a fairly high surface roughness and contain grains of
different shapes and sizes. It was found that the obtained films of copper oxide have high values of
the absorption coefficient, which confirms the possibility of their use as absorbing layers for solar
cells. The obtained values of the optical band gap of the material are in the range from 1.45 eV
to 1.60 eV. Raman spectroscopy revealed three modes A1g, B1g, and B2g, of the crystal structure of
monoclinic CuO. The devices based on p-type copper oxide are promising for solar cells fabrication
because they can reduce production costs, due to their low cost and inexpensive production methods
compared to silicon solar cells fabrication.
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1. Introduction

The rapid development of electronics requires using a variety of materials with the
necessary physical, electrical, and optical characteristics to create modern devices. That is
why scientists are paying more and more attention to studying new and already known
chemical compounds that can exhibit semiconductor properties. Among such compounds,
metal oxides can be considered the most promising [1]. These materials have several
advantages over most other compounds when creating detectors, sensors, photovoltaic
devices, and more. These advantages include environmental safety, non-toxicity, and
chemical stability, allowing for obtaining materials directly in the environment. The
composition of oxides, as a rule, contains elements that are widespread in the earth’s crust,
the methods of obtaining them are simple and require only low-temperature processing of
the material. In addition, the oxide compounds themselves have a potentially lower cost
due to inexpensive components and efficient and inexpensive production methods [2–4].

In recent years, a compound of copper oxide has been intensively studied as a semi-
conductor material. The most common and stable phases of this semiconductor are CuO
(tenorite), which has a monoclinic crystal lattice, and Cu2O (cuprite), with a cubic structure.
Both oxides are being studied as photovoltaic applications because of their reasonable
optical properties. CuO is a p-type semiconductor, which according to various data, has
a band gap of 1.2 to 2.1 eV, a high absorption coefficient (105 cm−1, 300 K), good thermal
conductivity (76.5 W mK−1), and electrical resistance, which can range from 10 to 105

Ohm·cm depending on the method of production [5–11].
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Due to their physical properties, copper oxide (CuO) films have already been used
in various fields of science and technology, such as the creation of lithium batteries [12],
bio- and gas sensors [13], solar cells [14], capacitors [15], infrared photodetectors [16],
catalysis [17], superconductivity [13], for the manufacture of various electrical and optical
devices [18,19], etc. However, the most promising applications of CuO, as novel material,
are gas sensors and photovoltaic solar cells [20,21].

CuO can be obtained by both physical and chemical methods such as magnetron
sputtering [14], molecular beam epitaxy [22], thermal evaporation [23], chemical precipita-
tion [24], polyol process [25], spray pyrolysis [5], sol-gel method [26], solvothermal [27],
hydrothermal methods [28], etc. Chemical methods for the synthesis of semiconductor
oxides are cheaper, faster, and, as a result, more productive than physical methods. This
allows them to scale quite easily for their industrial use.

The spray pyrolysis technique has the next attractive characteristics: cheapness, sim-
plicity, high application rate, and ability to obtain films on large area substrates from
various precursors, and therefore it is an effective method of fabricating oxide films with
high quality, which allows to precipitate them of varying thickness and size. An essential
advantage of this technique is that it does not require a vacuum. In addition, the obtained
films are usually homogeneous and are time and temperature stable. The physical prop-
erties of the spray-formed CuO thin films can be precisely controlled by adjusting the
deposition parameters such as gas flow rate, spray rate, substrate temperature, deposition
time, etc. In addition, 3D printers can be equipped with a spray head, which allows, if
necessary, the application of semiconductor films on complex three-dimensional surfaces.

It is well-known that functional properties of electronic devices depend on the funda-
mental characteristics of the applied films that can be changed by deposition regimes [16].
In this regard, we have studied structural and optical properties of CuO films deposited by
spraying precursor solution based on copper acetate monohydrate onto glass substrates.
The influence of substrate temperature on structural and optical properties of CuO layer
films deposited by pulsed spray pyrolysis has been studied in this paper.

2. Materials and Methods
2.1. Chemicals

Chemicals used for obtaining CuO films, copper acetate monohydrate (Cu(CH3CO2)2·H2O,
99%) and ethanol (C2H5OH, 95%), were purchased from the company «Sigma Aldrich»
(Bratislava, Slovakia).

2.2. Synthesis of CuO Thin Films

CuO thin films were obtained by pulsed spray pyrolysis method. For their fabrication,
a solution of copper acetate monohydrate (Cu(CH3CO2)2·H2O) with a concentration of 0.05
M in distilled water was used as a precursor. Then a few drops of 10% aqueous solution
of hydrochloric acid (HCl) were added to the initial solution to increase the degree of
solubility of the precursor, which allowed us to maintain the acidity of the pH solution
within (6–7) and avoid the formation of copper molecular complexes.

The preparation time of the solution was 10 min under stirring. The resulting solution
was sprayed using a jet nozzle onto heated amorphous glass substrates with dimensions
of 10 × 5 × 1 mm3, which were pre-cleaned in an ultrasonic bath for 10 min and washed
in ethyl alcohol and then in distilled water. The nozzle diameter was 0.2 mm. The work
distance (from the nozzle to the substrate surface) was 17 cm. The spraying rate and the
volume of sprayed solution were 2 cm3/min and 5 cm3 per sample, respectively. The
samples were obtained in the substrate temperature range from Ts = 600 K to 725 K with a
step of 25 K.

The spray droplets of precursor evaporate the during transport to the heated sub-
strate. Then the solid precipitate melts and evaporates without decomposition, and the
vapor diffuses to the substrate. This leads to the formation of layer of substance on the
surface. The compound containing the copper is slowly degraded to form CuO thin film.
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At low temperature the droplet splashes onto the substrate and decomposes. At high
substrate temperatures the powdery films were produced because of the vaporization and
decomposition of the precursor prior to the substrate surface. The optimum temperature
the solvent evaporates near substrate surface and adsorbed onto the surface, followed by
decomposition to yield a dense film with good adhesion.

2.3. Measurements

The structural characteristics of the deposited films were analyzed by the X-ray
diffraction (XRD) method (X-ray diffractometer Bruker D8 Advance, Fremont, CA, USA).
The method for calculating structural and substructural properties is described in detail
in [29,30]. Additionally, UnitCell (ver. Mar 2021) software was used to determine the
lattice parameters, which allows calculations on the position of all diffraction lines from
the material [31].

The morphological aspects and the structural quality of samples were probed by
scanning electron microscopy (SEM, Jeol, Tokyo, Japan) and atomic force microscopy
(AFM, Park XE-100, Park Systems).

Raman measurements were performed using a confocal microscope (Horiba-MTB
Xplora, HORIBA France SAS, Kyoto, Japan) at room temperature. The optical properties of
CuO films were investigated at room temperature using an Ocean Optics USB4000-UV-VIS
fiber optic spectrometer in the wavelength range λ = (300–900) nm. The band gap energy
of the obtained films was determined using the method described in detail in [32]. A probe
profilometer Dektak XT (Bruker Corporation, Fremont, CA, USA) was used to determine
the thickness of the samples.

3. Results and Discussion
3.1. XRD Analysis

To determine the structural features of the CuO thin films the method of XRD analysis
was used. The comparing of the diffraction angles and relative intensities of lines from
the fabricated thin films and the JCPDS standard were performed to phase analysis. The
XRD patterns from CuO thin films are shown in Figure 1, including the reference spectrum
from the pure CuO monoclinic phase (JCPDS card No. 00-048-1548) and Cu2O cubic phase
(JCPDS No. 01-078-2076).
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Figure 1. XRD patterns from synthesized CuO films at different substrate temperatures Ts, K: (1) 600,
(2) 625, (3) 650, (4) 675, (5) 700, and (6) 725. (Black vertical lines correspond to CuO; orange lines with
the triangles show the location of the cubic Cu2O peaks (JCPDS No. 01-078-2076)).

Figure 1 shows that all XRD patterns contain diffraction peaks located at angles of
32.5◦ (110), 35.5◦ (11-1), 38.7◦ (111), 48.7◦ (20-2), 53.4◦ (020), 58.2◦ (202), 61.5◦ (11-3), 66.2◦

(31-1), 68.0◦ (113), 72.2◦ (311), and 75.0◦ (004) that correspond to the specified reflections
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from the crystallographic planes [33]. These results are fully consistent with the data of the
standard JCPDS card and confirm the monoclinic structure of the fabricated CuO thin film
(spatial group C2/c). No additional peaks of secondary phases and uncontrolled impurities
were detected on the XRD patterns. This indicates a reasonably high purity of the obtained
thin films, which are single-phase and contain only the CuO phase.

The results of determining the lattice constants of CuO using UnitCell software and
obtained by calculations (expressions for calculation are shown in supporting material)
are shown in Figure 2a. The solid line shows calculations at a constant value of the angle
β = 99◦506′, taken from the reference data (JCPDS card No. 048-1548).

As shown in Figure 2a, the lattice constants a, b, and c of the CuO thin films obtained
by calculations are quite close to the reference values. At the same time, the values of the
constants obtained using the UnitCell program have much more significant differences
with the reference ones and for all the investigated temperatures of the films exceed the
calculated values. However, the use of this program allowed us to determine the angle β
values of the unit cell of the material, which equals 103.7◦. Because of the above, only the
calculated results are discussed below.
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lines correspond to calculation results, dashed-UnitCell software, dotted-reference data; (b) effect of
the substrate temperature on (4) microstrain level and CSD obtained using (1) Gauss and (3) Cauchi
approximation and (2) from threefold convolution.

It is established that when the substrate temperature increases above 625 K, the lattice
constant a of the investigated films slightly increases. At the same time, the constant b
initially slightly decreases, but the film deposited at Ts = 725 K increases significantly. The
constant c, on the contrary, slightly increases with increasing substrate temperature, but
for the sample obtained at Ts = 725 K decreases considerably in magnitude. In this the
case, the a values were larger, and c values were smaller than those given in the reference
JCPDS card.

Based on the results of measuring the lattice constants of the material, we calculated
the volume of the unit cell of the obtained samples. The unit cell volume was in the range
from 81.22 to 81.78 nm3.

Calculations of the substructural parameters of CuO thin films were performed in the
direction [11-1] of the crystal lattice of the monoclinic phase (by reflection from the plane
(11-1) and (22-2)). The coherent scattering domain (CSD) size calculations results by three
different methods are summarized in Figure 2b. As can be seen from the Figure 2b, the
values of the parameters of the film substructure obtained using different approximations
correlate well with each other. This indicates the reliability of the results. However, the
most accurate of these are the values obtained by the method of threefold convolution.
That is why they will be discussed. The CSD size of the studied films increases from
23.1 nm (Ts = 600 K) to 24.1 nm at 650 K with increasing substrate temperature, and
then begins to decrease to 21 nm (Ts = 725 K). Figure 2b (line 4) shows the effect of the
substrate temperature on microstrain level in CuO thin films. Presented dependence
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of microstrain level was obtained using threefold convolution. Microstrain values with
increasing deposition temperature first increased and then decreased. We observed a
similar phenomenon in the films of chalcogenides applied by vacuum methods [34].

3.2. Surface Morphology

SEM images of the surface of the synthesized CuO thin films are presented in Figure 3.
It can be seen that the nanostructured thin CuO films are quite homogeneous, have a clear
polycrystalline structure and a fairly high surface roughness, and also contain small pores.
No macroscopic defects, whether exfoliation, voids, or holes, were detected. Figure 3
shows that the grains of the obtained thin films are not homogeneous in size and shape.
They acquire spherical, cubic, lamellar, and other shapes. At the same time, those samples
deposited at higher substrate temperatures had crystallites predominantly cubic-like cut.
Increasing the temperature of the substrate leads to an increase in the size of the crystallites
in the thin films, and the average grain diameter is about 90 nm.

Coatings 2021, 11, x FOR PEER REVIEW 5 of 10 
 

 

the values of the parameters of the film substructure obtained using different approxima-
tions correlate well with each other. This indicates the reliability of the results. However, 
the most accurate of these are the values obtained by the method of threefold convolution. 
That is why they will be discussed. The CSD size of the studied films increases from 23.1 
nm (Ts = 600 K) to 24.1 nm at 650 K with increasing substrate temperature, and then begins 
to decrease to 21 nm (Ts = 725 K). Figure 2b (line 4) shows the effect of the substrate tem-
perature on microstrain level in CuO thin films. Presented dependence of microstrain 
level was obtained using threefold convolution. Microstrain values with increasing depo-
sition temperature first increased and then decreased. We observed a similar phenomenon 
in the films of chalcogenides applied by vacuum methods [34]. 

3.2. Surface Morphology 
SEM images of the surface of the synthesized CuO thin films are presented in Figure 

3. It can be seen that the nanostructured thin CuO films are quite homogeneous, have a 
clear polycrystalline structure and a fairly high surface roughness, and also contain small 
pores. No macroscopic defects, whether exfoliation, voids, or holes, were detected. Figure 
3 shows that the grains of the obtained thin films are not homogeneous in size and shape. 
They acquire spherical, cubic, lamellar, and other shapes. At the same time, those samples 
deposited at higher substrate temperatures had crystallites predominantly cubic-like cut. 
Increasing the temperature of the substrate leads to an increase in the size of the crystal-
lites in the thin films, and the average grain diameter is about 90 nm. 

AFM images of the surface of CuO thin films and their 3D topology are shown in Figure 
4. The resulting films have a high homogeneous surface with tightly packed grains. The 
figure shows that the increasing Ts during obtaining process leads to a grain size increase. 
The values of Rq the root mean square deviation of their profile from the mean line and Ra 
average arithmetic roughness were calculated to quantify the surface roughness of the 
films. 

   

   
Figure 3. SEM images of the surface of the CuO thin films deposited at different substrate tempera-
tures (50 k magnification), Ts, K: (a) 600, (b) 625, (c) 650, (d) 675, (e) 700, (f) 725. 

  

Figure 3. SEM images of the surface of the CuO thin films deposited at different substrate tempera-
tures (50 k magnification), Ts, K: (a) 600, (b) 625, (c) 650, (d) 675, (e) 700, (f) 725.

AFM images of the surface of CuO thin films and their 3D topology are shown in
Figure 4. The resulting films have a high homogeneous surface with tightly packed grains.
The figure shows that the increasing Ts during obtaining process leads to a grain size
increase. The values of Rq the root mean square deviation of their profile from the mean
line and Ra average arithmetic roughness were calculated to quantify the surface roughness
of the films.
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Changing the temperature of the substrate affects the roughness of thin films. It was
established that increasing of substrate temperature from Ts = 600 K to TS = 650 K leads to
an increase in surface roughness of the thin films (Ra from 15.51 nm to 46.08 nm, Rq from
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18.69 nm to 58.12 nm, respectively). Further increase in Ts leads to decrease in the values of
Ra and Rq to 19.30 nm and 25.36 nm, respectively.

3.3. Raman Measurements

CuO is a compound that crystallizes into a monoclinic crystal structure. It is described
by the space group C2h (C 2/c), where Cu2+ ions have four bonds with oxygen [32].
The compound has a four-atom crystallographic cell but contains only two atoms in the
primitive cell. Thus, the existence of 12 vibrational modes is possible in the connection.
Furthermore, two copper atoms in a primitive cell are in states with symmetry, described
as C1(2), and an oxygen atom in C2(2) [35].

The optical phonon modes of the compound relative to the center of the Brillouin zone
are given by the expression ΓRA = 4Au + 5Bu + Ag + 2Bg, where Γ is the degree of freedom
of vibrations, Au and Bu correspond to infrared modes, and Ag and Bg correspond to
Raman modes. Thus, we have six infrared active modes (3Au + 3Bu), three of which belong
to acoustic (Au + 2Bu modes), and three to Raman scattering (Ag + 2Bg modes) [36–38].

Figure 5a shows the Raman spectra of CuO thin films deposited at different substrate
temperatures in the frequency range from 180 cm−1 to 800 cm−1. For the synthesized films,
the Raman peaks at frequencies 268, 320, and 604 cm−1 correspond to the modes A1g, B1g,
and B2g of the crystal structure of monoclinic CuO, respectively. The obtained frequencies
correlate with those given in the reference [39,40]. Peaks at frequencies of about 430 cm−1

and 505 cm−1 correspond to peaks in the spectra from the substrate.
It is known that the intensity of Raman peaks depends on the grain size. The most

intense mode A1g (268 cm−1), which characterizes the monoclinic structure of CuO, is
present in the spectra of all deposited films. The shift of the position of the peaks in different
samples (Figure 5b) indicates the presence in the films of microstresses, which may be
due to the presence of one-dimensional defects associated with the presence of oxygen
vacancies and two-dimensional defects (dislocations) that deform the lattice [41].
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3.4. Optical Properties

Figure 6 shows the transmittance and absorbance spectra of films taken in UV and
the visible wavelength range λ = (300–900) nm. It is established that CuO thin films have
a high absorbance in the visible spectrum (85–90%), which decreases with increasing
wavelength. The highest values of the absorbance are observed for films deposited at a
higher substrate temperature.
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Figure 7a shows the dependences (αhv)2-(hv) used to determine the optical band gap
of the synthesized CuO thin films. The calculated energy of the optical band gap CuO in
the case of direct transitions is in the range (1.45–1.60) eV (Figure 7b). These values are
significantly higher than those given in the reference data for bulk CuO [18,24,42].
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It is known that the change in Eg of the film material may be due to the presence
of defects, small grain size, semiconductor degeneracy, etc. [43,44]. Thus, the change of
the material’s band gap indicates a difference in the quality of the thin films applied at
different deposition temperatures. The obtained band gap values are similar to the values
determined for CuO films presented in the works of other researchers [45].

The band gap energy increases with decreasing size of the nanostructured material,
and discrete energy levels appear in the band. When photons fall on semiconductor
material, they will be absorbed only when the minimum photon energy is sufficient to
excite the electron. Of course, the band gap energy of nanostructured CuO thin films is
greater than the energy of the bulk material [42,46].

In addition, thin film resistance was analyzed by Van Der Pauw using four small
In contacts placed on the corners of the square on the top of the thin film. It has been
found that resistance is reduced linearly from 12 Ohm·cm to 5.9 Ohm·cm for 600 to 725 K,
respectively. For resistivity calculation an average thickness ~1000 nm was used.

4. Conclusions

Thin films of CuO were deposited by pulsating spray pyrolysis method. The influ-
ence of substrate temperature on morphological, structural, and optical properties was
determined.
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Based on XRD analysis, it was determined that the CuO thin films are single-phase.
AFM and SEM measurements showed that the obtained films have a reasonably high
surface roughness. An increase in the substrate temperature leads to an increase in grain
size in the obtained thin films.

Raman spectroscopy revealed three modes A1g, B1g, and B2g of the crystal structure
of monoclinic CuO. Peak shifts in different samples indicate the presence of microstresses
and defects that violate the CuO lattice.

It is established that the obtained thin films of CuO have high values of the absorption
coefficient, which confirms the possibility of using them as an absorbing layer in solar cells.
Furthermore, the optical band gap of CuO thin films, ranging from 1.45 eV to 1.60 eV, was
determined. The discrepancy between the values of the band gap relative to the values for
the bulk material may be due to the presence of defects or changes in grain size in thin
films, which can be considered the main factors of changing the band gap of deposited
CuO thin films.
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