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Polyvinylcarbazole (PVK) exhibits excellent interface properties despite its structural properties play-
ing a dominant role in nanocomposites. In the present work, we attempted to identify the interface and the
molecular mechanism in pure and nano ZnO doped PVK samples. The performance of solution-cast foil
samples of pure and nano ZnO sensitized PVK samples with similar (Al-Al) electrode combinations was
studied by varying temperature from 30 to 170 °C. Polymer samples exhibit dielectric loss maxima around
100+10 °C. The peak is shifted towards lower temperatures, and variation is found in short circuit ther-
mally stimulated discharge current (TSDC) study. The results show that the polymer interface and matrix
behavior are suitable for microelectronic device applications. The location of the TSDC a-peak is found to
be comparable with the a-peak obtained by dielectric relaxation spectroscopy. The results obtained by
TSDC, XRD, and EDX analysis are in good agreement with the results of TSDC and charge transfer inter-

face of the polymer matrix.
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1. INTRODUCTION

Polymers are known to be good electret forming ma-
terials. Polymer electrets have several applications in
modern solid-state devices. In recent years, a huge
amount of literature has appeared on electret forming
characteristics of polymers, but the mechanisms re-
sponsible for charge storage in polymers are far from
being clear. Studies on polymers have attracted partic-
ular attention due to their useful properties, unique
disordered structure, and potential applications in
many technological and engineering areas [1-5]. Poly-
vinylcarbazole (PVK) is a polar polymer, and compara-
tively little attention has been paid to under-stand its
charge storage capability.

With the progress in the field of materials science,
the use of insulating materials in solid state devices of
engineering and microelectronics has become very
common [6-8]. The problem of selecting a suitable insu-
lator for a particular use has become complicated due
to their operation in abnormal conditions of high envi-
ronmental humidity, very low and very high tempera-
tures, electrical and mechanical stresses, etc. [9-12]. It
has been shown that electret forming characteristics of
polymers can be greatly improved by doping them with
suitable impurities. With this view, the PVK matrix
has been sensitized with nano ZnO under suitable con-
ditions [13, 14].

2. EXPERIMENTAL DETAILS

Films of pure and nano ZnO doped PVK samples
were formed using solution cast technique by taking 1,
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2, 3 and 4 mg of DMF and nano ZnO, respectively. Pure
and nano ZnO doped PVK films in our study were
7.4 cm in diameter with circular aluminum electrodes
5.5 cm in diameter deposited on them. The relatively
large diameter of the sample ensured that the remain-
ing barren annular polymer film provided insulating
edges between the two electrodes. For short circuit
TSDC measurements, the samples were coated with
aluminum electrodes on both sides, while for open cir-
cuit measurements, the samples had an aluminum
electrode on the side which had to be given positive
polarity during polarization. This circular aluminum
foil acted as a patch electrode for the uncoated side of
the one-sided aluminum deposited samples. Patch elec-
trode was removed during depolarization [15].

For both polarization and depolarization processes,
the bottom electrode was surrounded by a Teflon ring.
This Teflon ring's internal diameter was 5.7 cm and the
outer diameter was 9.0 cm, the height of the Teflon ring
was 1 mm less than that of the fixed bottom electrode.
This prevented the sample edges from curling during
the polarization and depolarization process, especially
at and above the glass transition temperature 7.

3.RESULTS AND DISCUSSION

The thermally stimulated discharge currents of pure
and nano ZnO doped PVK samples were measured at
different field and temperate parameters. Details are
given below: polarizing field strength is 300 and 900 V,
polarizing temperature is 45 and 75 °C, heating rate is
3 °C/min, electrode material is aluminum.
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Fig. 1 and Fig. 2 display the thermally stimulated
discharge current (TSDC) spectra for pure and nano
Zn0O doped PVK samples polarized with 300 and 900 V
at 45 and 75 °C, respectively. The TSDC thermograms
for different ratios of ZnO sensitized PVK samples (i.e.,
PVK + 1 mg nano ZnO, PVK + 2 mg nano ZnO, PVK +
3 mg nano ZnO, and PVK + 4 mg nano ZnO represented
by M1, M2, M3, and M4, respectively) with comparative
TSDC thermogram of pure PVK samples poled with (A)
300 and (B) 900 V at a constant polarizing temperature
of 45 °C are shown in Fig. 1, and TSDC thermograms of
sensitized PVK samples poled at (A) 45 and (B) 75 °C
with a constant voltage of 900 V are shown in Fig. 2.
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Fig. 1 — Comparative TSDC thermogram of pure PVK samples
poled with (A) 300 and (B) 900 V at a constant polarizing
temperature of 45 °C

Since PVK is a polar polymer, the contribution to
polarization may come from the field and different
parameters of relaxation and interfacial mechanism.
The TSDC thermograms exhibit a broad peak which is
centered around 100+10 °C. The magnitude of the peak
increases with field strength and polarization effect
depending on the influence of the reaction mechanism.
In some cases, a large current is observed in TSDC
thermograms, which gradually decreases to a certain
temperature and further with an increase in the polar-
izing field or temperature due to the polarization
mechanism. Saturation current is visible at the end of
the thermograms. The peak is attributed to the inter-
face, and at higher temperatures, charge carrier injec-
tion enhances the charge storage mechanism. This
process is followed by a shift in the current maximum
temperature (Tm) with Ep [16].

The presence of a peak in the high-temperature ar-
ea in this case indicates that ion injection may play an
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important role in this polymer interface. Prior to field
treatment, it is likely that PVK often has a large num-
ber of impurity molecules, which dissociate under the
action of a combination of strong internal and external
fields on different ionic species. In a polymer, charge
trapping occurs in the main molecular chain, side
chains, and at the interface between the crystalline and
amorphous regions [17, 18]. Any additional trapping
sites can be generated in a strong field during the se-
lected formation.
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Fig. 2 - TSDC thermogram of sensitized PVK samples poled
at (A) 45 and (B) 75°C with a constant voltage of 900 V

TDSC study shows that due to polarization, uniform
structural forms and charge carriers play a dominant
role. The complete process is controlled by the electric
field, and the total charge accumulation is calculated
from the activation energy. In this way, TSDC gives
excellent results for microelectronic device applications.

3.1 Structural Analysis

The XRD diffractograms of pure and nano ZnO sen-
sitized (in different ratios) PVK samples are shown in
Fig. 3. These spectra exhibit a broad peak for pure as
well as nano ZnO sensitized PVK samples. The addi-
tion of nano ZnO does not result in a new peak or a
shift relative to PVK [19, 20]. The XRD trend reveals
that as the sensitizer increases, the full width at half
maximum (FWHM) increases. The observed increase in
FWHM is usually associated with a decrease in the
polymer matrix crystallinity. The average crystallite
size L is measured using the Scherrer formula:
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L = kA/(Bcosb), 1

where fis the full width at half maximum (FWHM) of
the peak (in radians) and k is the shape factor whose
value is equal to 0.9. The crystallite sizes of pure and
nano ZnO sensitized (in different ratios) PVK samples
are calculated and listed in Table 1. In the present
study, X-ray analysis shows that sensitization does not
change the phase of PVK and increases peak intensity
and crystallite size.
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Fig. 3 — XRD spectra of (A) pure and nano ZnO sensitized
PVK samples: (B) M: and (C) M4

Table 1 — Structural parameters of pure and nano ZnO sensi-
tized PVK samples obtained from XRD patterns
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6 =15.80
809.47 %= 18.73 0.34 5.31

Ms 17.00

Samples| 26 | Intensity | FWHM | L@)| D
M 16.88 | 727.31 2 = gzig 049 | 5.31
M 16.88 | 1730.58 2 = 1223 0.46 | 5.31
M 16.88 | 1759.45 2 - i::gz 0.45 | 5.31
M. 16.99 | 802.56 2 = ig:g; 0.35 | 5.22

FESEM micrographs of pure and nano ZnO doped
PVK films are shown in Fig. 4. The surface roughness
and crystalline texture tend to be reduced, assisting in
the development of a smooth surface texture on nano
ZnO doped film.
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Fig. 4 —- FESEM micrographs of (a) pure and (b) nano ZnO
doped PVK samples

Fig. 5 and Fig. 6 depict Energy Dispersive X-ray
(EDX) study of pure and nano ZnO doped PVK sam-
ples, respectively. These statistics and Table 2 reveal
that the polymer interface raises the percentage of C,
Nz, and Oz and shows the existence of Cl.
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Fig. 5 — PVK samples presented graphically utilizing the EDX
methodology
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Fig. 6 — Graphical representation of nano ZnO sensitized PVK
sample (M1) using EDX

Table 2 — Compositional analysis of nano ZnO sensitized PVK
sample

Element wt. % at. %
CK 81.09 84.18
NK 09.73 08.66
OK 09.18 07.15
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ExcnepumeHnTH i3 MOJIEKYJIAPHUM MEXAHI3MOM Ta CTPYKTYPOIO iHTepdeiicy uyncTux i
JIETOBAaHUX MOJIIMEPHUX HAHOKOMIIO3UTIB, [0 BUKOPUCTOBYIOTHCS B MiKpPO€eJIeKTPOHIi
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Tlonisirinkap6ason (PVK) gemorcTpye 4ynoBi BIACTUBOCTI 1HTEpENCY, HE3BAMKAIOYN HA HOr0 CTPYKTY-
PHi BJIACTHBOCTI, AK1 BiirpaioThb JOMIHYIOUY POJIb Y HAHOKOMIIO3UTAX. Y po0OTi MU CIIpoOyBasd imeHTudiKy-
BaTH iHTEpdeiic Ta MOJIeRYIAPHUI MexaHiaM y 3paskax uucroro PVK rta PVK, serosanoro vauo ZnO. Joc-
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JIPKEHO eKCIUIyaTAINMHI XapaKTepPUCTUKY 3paskiB juroi dossru 3 uncroro PVK ta PVK, cencubimizoBano-
ro HaHo ZnO, 3 momibummu (Al-Al) KoMOIHAITIAME €JIEKTPO/IIB IIJIAXOM BapiloBaHHS TemiiepaTypu Bif 30 10
170 °C. IomimepHi 3pasku JeMOHCTPYIOTh MAKCHUMYMH JIieJleKTpudHuxX BTpatr O0suabko 100+10 °C. ITik ami-
MeHn# y Ok HIKIUX TeMIIepPaTyp, 1 3MIHU BHUSBJICH] TIPU JOCTIPKEHH] TE€PMIUHO-CTUMYJIHOBAHOTO PO3PSI-
Horo crpymy koportkoro samukauusa (TSDC). Pesyinbraru mokasyors, 110 iHTepdeiic moaiMepy Ta IoBeIIHKA
MATPHUIIL IMIX0AATh JJIs 3aCTOCYBAHHSA y PUCTPOSX MikpoesekTporikn. [Tosoxenus a-miky TSDC Bussuiio-
Cs TIOPIBHSAHHUM 3 Q-IIKOM, OTPUMAHUM METOJOM J1eJIeKTPUYHOI pesIaKcaIiitnol crexrpockorii. Pesyibra-
™, ofepskani 3a momomoroo T'SDC, XRD ta EDX awmasiay, mobpe yaromxyorses 3 pedyabraramu TSDC ta
1iHTepdeiicoM epeHeceHHs 3aps/Iy IIOJIIMEePHOI MATPHUIII.

Knrouosi ciiosa: TSDC, XRD, Enepris akrusarti, PVK, ZnO, JumossHa opierTatis, Temmeparypa cKIIyBaHHS.
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