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Abstract: The article deals with the possibility of efficient control of small and medium-scale biomass-
fired boilers by implementing low-cost sensors to sense the trend of carbon monoxide emissions
into control of the biomass combustion process. Based on the theoretical analysis, a principle block
diagram of the process control system was designed for the possibility of providing near-optimal
control of the biomass combustion regardless of its quality parameters. A cost-effective hardware
solution to obtain the dependence of CO emissions on O2 concentration in flue gas during combustion
and new control algorithms was implemented into the process control and monitoring system of the
biomass-fired boilers to test them in the real operation. A description of the designed control system,
a data analysis of the monitored values and their impact on combustion process, and some results of
the implemented control of the real biomass combustion process are presented in the article.

Keywords: biomass combustion; process control; combustion stabilization; lambda probe; CO
emissions

1. Introduction and Related Works

Combustion is currently the most common way to obtain energy from biomass. For
this purpose, wood pulp is used, in particular as piece wood or in the form of wood
chips [1]. Especially wood chips prepared from waste wood generated during its extraction
and processing represent an economically very interesting type of fuel.

As optimal biomass combustion, we mean perfect combustion with a minimum excess
of the combustion air. If more combustion air is supplied into the combustion chamber than
optimal, energy losses occur. In case less air is supplied than optimal, imperfect combustion
occurs with some flammable substances escaping through the flue gases. These are mainly
carbon monoxide (CO) and volatile hydrocarbons. Flammable substances in the flue gas
cause losses in terms of energy use of the fuel and also pollute the air. However, the
problem of achieving near-optimal biomass combustion is more complex, because it is
necessary to divide the supplied air into primary and secondary air by optimum excess air
ratio. Due to the non-constant properties of the fuel (especially changing moisture), there is
also a necessity to control the amount of combustion air during wood chips supply into a
furnace and during the combustion process [2,3]. Approaches to this control can be based
on sensing, for example, the carbon monoxide emissions, the oxygen concentration in flue
gases, and fuel characterization as a part of process control [4–6].
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A lot of authors have been dealing with quality improvement of biomass combustion
in recent years. Some of them focused on the problem from the ecological point of view,
especially reducing pollutant emissions, because as it is stated in [7], uncontrolled or badly
controlled biomass combustion can have a more serious impact on the environment than
coal or oil combustion. A problem of decreasing NOx emission is solved, for example,
in papers [8–12]. In these studies, there is reviewed information regarding the nitrogen
oxides emissions, and the main formation mechanisms and the state-of-the-art control
techniques are discussed as well as the influence of fuel composition (especially fuel-bound
nitrogen), heating appliance type, and operating conditions with the help of the gathered
experimental emission factors data. Other topics on the monitoring, sensing, and decreasing
CO are discussed, for example in [13], where different methods to obtain models for the
prediction of carbon monoxide emissions in a small-scale biomass combustion furnace
for wooden pellets are presented. Ecological questions of the operation of small-scale
biomass-fired boilers are also discussed in [7]. A technical and economical technology
comparison for small and medium-scale electricity production from biomass is presented
in [14], where is stated that for small-scale applications, biomass combustion is still the most
attractive solution under the economical point of view. Similarly, it is stated also in [15]
that using locally produced biomass can lead to significant cost savings and support the
local economy. Due to recent advances in combustion control and improved efficiency of
the heating networks, current small biomass heating systems have lower emission profiles
than in past that make them an attractive option to consider, as it was analyzed in [15].
For example, a burnout control strategy for small-scale biomass furnaces based on the
continuous estimation of the CO-O2-characteristic was presented in [16], where the Kalman
filter is used to continuously estimate the correlation between the oxygen concentration and
the resulting carbon monoxide emissions. The usability of the Learning Entropy approach
for the adaptive novelty detection in the solid-fuel combustion process was described
in [17]. Modern control strategies for biomass combustion systems in residential heating
are also presented in [18]. This strategy simultaneously guarantees good combustion
conditions and ensures that the water temperature is kept at the desired value using the
controlled variables such as the feed temperature and residual oxygen content of the
flue gas. The manipulated variables are suction fan frequency, primary air control valve,
secondary air control valve, and boiler pump frequency.

An interesting experiment concerning the sensing characteristics and long-term stabil-
ity of different kinds of CO/HC gas sensors during in situ operation in the flue gas from
different types of low-power combustion systems (wood-log- and wood-chip-fueled) was
described in [19]. It was experimentally shown that the signals of CO/HC sensing elements
yield important additional information about the wood combustion process. This was
demonstrated by the adaptation of an advanced combustion airstream control algorithm
on a wood log-fed fireplace and by the development of a combustion quality monitoring
system for wood-chip-fed central heaters.

An important task to reach minimum carbon monoxide emissions in the flue gases by
the control of biomass combustion is to find such an optimal interval from the measured
dependence CO = f(λ) so that carbon monoxide emissions would be minimal [20]. Since
the correlation between CO emissions and lambda value is not simple, two approximation
tools using neural networks have been used and tested in our research to solve this
task [21]. Then, the problem of burning stabilization based on low-cost sensing of carbon
monoxide emissions and oxygen concentration in the flue gas has been solved [22]. To
monitor the operational parameters of heat production in biomass combustion boilers, an
application for the creation of analyses, reports, and statistical evaluations of monitored
parameters was designed and implemented [23]. However, the data obtained from the
combustion process in some boilers were extremely noisy (influenced by various transfer
errors, disturbances, and external interferences), so they had to be properly filtered. A
special filter with a membership function for signal filtering of the oxygen concentration
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and carbon monoxide emissions sensing has been used to reduce signal interferences
arising in biomass combustion [24].

The aim of our research described in this article has been to design a cost-effective
monitoring and control system based on information on the values of CO emissions and
O2 concentration in the flue gas usable not only in medium-scale but also in small-scale
biomass-fired boilers. The sections of this article are structured in the following manner:
following the introduction and related works in this section, the principles of complete
and incomplete biomass combustion and its control are introduced in Section 2. Section 3
describes a cost-effective system for optimal biomass combustion control, and Section 4
contains results and discussion. Finally, Section 5 presents a summary of the article along
with some ideas for future work.

2. Materials and Methods
2.1. Combustion Process and Its Products

The biomass combustion process, as well as the combustion of other fuels, is a chemical
process by which substances contained in biomass react rapidly with oxygen. During this
process, heat is released. Biomass combustion produces the same basic substances as the
combustion of other organic fuels, especially CO2 and H2O. Combustion reactions, in
which combustible elements merge with oxygen, are referred to as exothermic reactions
according to chemical Equations (1) and (2):

C + O2 → CO2 + ∆H, (1)

2 H2 + O2 → 2 H2O + ∆H. (2)

However, these basic relationships do not accurately reflect the combustion conditions
that exist in a real combustion chamber, in which combustion does not takes place only with
pure oxygen but also under the presence of air, which contains oxygen and nitrogen, too.
Depending on the conditions of the combustion process and the compounds contained in
the biomass, other substances are produced, which are considered to be pollutants [25,26].
This process can be expressed by the chemical Equations (3)–(5). It is mainly carbon
monoxide CO, which is a product of incomplete combustion:

2 C + O2 → 2 CO. (3)

If a sufficient combustion temperature and sufficient amount of combustion air exist,
then CO is oxidized to CO2:

2 CO + O2 → 2 CO2. (4)

Another product of biomass combustion is nitrogen oxides NOx, which is also consid-
ered to be a pollutant:

N2 + X O2 → 2 NOx. (5)

In the case of high combustion temperatures, mainly thermal NOx occurs, but such
high temperatures usually do not appear in the biomass combustion process. At tempera-
tures common for the combustion of biomass fuel, NOx is generated primarily from the
nitrogen contained in the fuel. Sulfur is contained in a minimal amount in biomass, and
therefore, SO2 emissions from biomass combustion are very low, which is one of the great
advantages of biomass over fossil fuels.

The composition of the fuel, the basic chemical reactions, the composition of the flue
gases, and the influence of the primary and secondary air on the biomass combustion
process are shown in Figure 1 [27,28].
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Figure 1. Basic chemical equations and biomass combustion products.

The useful heat, generated as a result of the above-described basic chemical Equations
and schematically shown in Figure 1, is transferred to the working medium. During this
process, part of the energy is lost in the flue gas. The efficiency of heat production depends
not only on the fuel quality (ash and water content, calorific value) but also on the power
and operation of the heat exchanger, on the fuel–air mixture, on the flue gas temperature,
and on the operating mode [29,30].

During the combustion process, heat losses occur from the combustion chamber,
which can be divided as follows:

• Flue gas losses, which depend on the flue gas temperature, the amount of air, the fuel
composition, and the degree of fouling of the heat exchange surfaces of the boiler.

• Losses due to chemical non-combustion with flammable (volatile component) in the
flue gas, whereas imperfect combustion causes the production of carbon monoxide
and hydrocarbons in the flue gas.

• Losses by mechanical non-combustion with combustibles in solid residues such as
carbon in ash and fly ash.

• Heat losses through the ash layer and fly ash, which are related to the removal of solid
residues with heat content from the boiler.

• Losses by heat conduction and convention to the environment, which depend mainly
on the quality of insulation, the thickness of the walls of the combustion chamber, and
their surface treatment.

These heat losses, appearing at incomplete combustion, lead to a decreasing of eco-
nomic efficiency, increasing of the environmental negative impact, and decreasing of the
safety of heat production. For this reason, it has been necessary to monitor the parameters,
which have a negative effect on the operation and efficiency of such equipment, as well
as the environment. In particular, the monitoring includes fuel composition, flue gases
composition (CO2, CO, O2), the amount of air supplied into the combustion chamber, the
boiler incrustations, combustion air, and flue gas temperatures [30].
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2.2. Mathematical Description of Complete and Incomplete Combustion

From the mentioned above, it follows that it is necessary to monitor the combustion
process and thus distinguish whether the combustion is complete or incomplete in order to
achieve maximum economic efficiency.

In order to increase the efficiency of combustion and to achieve the minimum pro-
duction of pollutants, it is desirable that the combustion process be close to complete
combustion. The mathematical description is based on the stoichiometric calculation of the
fuel volume composition and flue gases based on chemical Equations (1)–(4).

Let us consider the following basic components of the fuel:

C + H + S + O + W = 1
[
kg·kg−1

]
(6)

where C is carbon, H is hydrogen, S is combustible sulfur, O is oxygen, and W is water. For
a perfect combustion of the 1 kg of fuel, a theoretical amount of dry air is required

Vda min =
22.39
0.21

(
C

12.01
+

H
4·1.008

+
S

32.06
− O

2·16

)[
m3·kg−1

]
(7)

where C, H, and S are the fuel combustible components
[
kg·kg−1

]
, and Vda min is the

theoretical minimum of dry air required for complete combustion.
In the same way, we determine a minimum volume of dry flue gases Vdf min arising by

the complete combustion of the 1 kg of fuel without excess air based on the stoichiometric
calculation:

Vd f min = VCO2 + Vo +
21.89
32.06

S +
22.40

28.013
N + 0.7897Vda min

[
m3·kg−1

]
(8)

where VCO2 is the volume of CO2 in the flue gas resulting from the combustion of C from
fuel and VO is the volume of CO2 in the flue gas resulting from the combustion of air com-
ponents, 21.89

32.06 S is the volume of incurred SO2, 22.40
28.013 N is the volume of combusted nitrogen

from fuel, and 0.7897Vda min is the volume of combusted nitrogen from the combustion of
air components.

The volume of CO2 in the flue gas resulting from the combustion of C from fuel is
determined by the formula:

VCO2 =
22.27
12.01

C (9)

The volume of CO2 in the flue gas resulting from the air combustion is determined by
the formula [25]:

Vo = 0.0003Vda min. (10)

The amount of oxygen needed to burn all the carbon is given by the form:

VO2(C) =
22.39
12.01

C (11)

To distinguish between complete and incomplete combustion, we define excess air as
the ratio of the amount of air actually supplied and needed theoretically.

λ =
Vda

Vda min
(12)

It is expected that the excess air is equal to 1 for complete combustion. However,
such an ideal state occurs only under ideal combustion conditions and with complete
fuel mixing; only then, the volume fraction of CO in the flue gas is equal to zero. It is not
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possible to achieve such a state under real operating conditions, so we try to keep the excess
air close to 1. Then, the amount of dry flue gas with excess air is given by the formula:

Vd f = Vd f min + (λ− 1)Vda min. (13)

Then, the measured volumes x in the dry flue gas must correspond to these values:

xCO2 =
VCO2 + λVO

Vd f min + (λ− 1)Vda min
. (14)

xO2 =
0.21(λ− 1)Vda min

Vd f min + (λ− 1)Vda min
(15)

In the case of burning all C under complete combustion, we put λ = 1 in Equation (14),
and we can denote volume as a maximum one:

xCO2max =
VCO2 + VO

Vd f min
(16)

Then, the excess air coefficient λ can be expressed from Equation (14) using (16) as

λ = 1 +
(

xCO2max

xCO2

− 1
)Vd f min

Vda min
(17)

or from Equation (15)

λ =
0.21 + xO2

(Vd f min
Vda min

− 1
)

0.21− xO2

(18)

and Equations (17) and (18) can be simplified as follows:

λ =
xCO2max

xCO2

(19)

or
λ =

0.21
0.21− xO2

. (20)

If relations (19) and (20) do not give the same results, the combustion is not complete.

2.3. Consequences for Monitoring and Control of Biomass Combustion in Small and
Medium-Scale Boilers

Based on the results of the above mathematical analysis, it is possible to retrospectively
monitor and evaluate the parameters of the combustion process. On the basis of the
measured values of O2 or CO2 and calculated values of the excess air coefficient λ, we are
able to distinguish whether the combustion is complete or incomplete. Next, it is possible
to control the combustion process based on the monitored values in order to achieve
maximum efficiency (maximum heat gained) at a minimum concentration of pollutants.
The problem with such monitoring or control is that we do not have always information
from the flue gas analyzer. The flue gas analyzer is a standard part of equipment only in
large-scale boilers, so there, the volumes of CO2 and O2 are known. However, in small-scale
boilers, flue gas analyzers are not a standard part of equipment due to their relative high
price compared to the boiler price. Another problem is that it is impossible to achieve
complete combustion in terms of operational practice, which causes heat loss and reduces
efficiency. Therefore, we should use the formulas for incomplete combustion, in which CO
values in the flue gas are considered, to carry out the control of such process.

In order to avoid losses related to the appropriate amount of the supplied air, it is
necessary to monitor the amount of oxygen. The specific value of % O2 concentration
depends on the moisture and the type of wood from which the fuel is made (e.g., wood
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chips), burner settings, boiler type, and other parameters mentioned in the previous
sections [20,21,31]. Previous measurements at medium-scale wood chips fired boilers have
shown that the optimal operating range for biomass combustion is usually in the range of
5% to 10% O2 concentration in the flue gas, which means that the air ratio (20) would be in
the interval λ ∈ 〈1.3; 2.1〉, where near-optimal combustion can be reached (but of course is
never complete). In case, that the value is at the upper limit of this interval or even λ > 2.1;
then, the combustion will more and more approach a state of incompleteness, heat losses
by increased flue gas streams will be enhanced, and the produced heat will decrease. A
typical course of the dependence of combustion efficiency and carbon monoxide emissions
in the flue gas on the amount of combustion air characterized by the air ratio λ is shown in
Figure 2.
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One of the biomass combustion control system tasks is to find such an amount of
supplied oxygen (control set point) described by parameter λ, so that CO emissions would
be minimal, although the fuel parameters have been changed. Then, the near maximal
efficiency of combustion can be reached. For fulfillment of this task, it is necessary to
continuously monitor a trend between CO emissions and excess air ratio and consequently
to change the desired value of O2 concentration in the flue gas. In this way, a faster control
response to changes in fuel quality and the deterioration of combustion can be reached.

3. Experiments
3.1. Cost-Effective System

Based on the theoretical analysis of a complete and incomplete biomass combustion
presented in Section 2, it follows that it is important to evaluate the so-called excess air
coefficient λ during the combustion control to ensure almost complete combustion and to
achieve the highest efficiency at the lowest level of pollutants, especially for CO emissions.
For that reason, it is necessary to have the continuous information about the oxygen
concentration in the flue gas. So, the excess air ratio coefficient is usually detected indirectly
by measuring the O2 concentration in the flue gas by operation of a so-called lambda probe.

To achieve complete biomass combustion and high efficiency where the oxygen value
is nearly zero (λ ≈ 1) is practically unachievable. Therefore, the aim is to operate the
biomass boiler in the lowest possible excess air (at the lower limit of the optimal interval).
On the other hand, the boiler needs to be operated at such λ value so that the CO concen-
tration in the exhaust gas does not increase due to low excess air. In the real operation, it
commonly happens that the quality of combustion deteriorates (for example, due to wood
chips moisture higher than 35%), and CO sharply increases if the excess ratio decreases
to the lower limit of the optimal interval. Such a dynamic state has an adverse effect on
the combustion stability; high values of CO emissions appear and leakages of pollutants
into air occur, while the temperature in the combustion chamber decreases. Therefore,
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maintaining the optimal air ratio value at the lower limit of the optimal interval is difficult,
respectively often even unachievable.

This problem was solved in our experiment in such a way that in addition to the
lambda probe for sensing the excess air, the low-cost gas sensor for sensing the trend of
carbon monoxide emissions was incorporated into a control system of the wood chips
fired boiler. When the amount of CO increases sharply, the control system decreases the
amount of wood chips supplied into the combustion chamber or even breaks fuel filling
in case of extreme CO emissions increasing. Blocking the fuel supply quickly stabilizes
the combustion process, especially in transient states, i.e., when starting the boiler, when
changing the quality of the supplied wood chips, or when changing the required boiler
power.

3.2. Biomass Combustion Process Control

Based on the theoretical analysis, a principle block diagram of the process control
system was designed (Figure 3) for the possibility of providing near optimal control of
the biomass combustion regardless of its quality parameters (changing moisture, type of
wood). There are these control loops in the block diagram:

• The boiler power control loop as a main control loop for the boiler output water
temperature.

• The fuel supply control loop to adjust the amount of supplied fuel according to the
desired power of the boiler and current state of the combustion process.
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• The primary air control loop to adjust the amount of supplied primary air according
to the amount of supplied fuel and the actual output boiler temperature.
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• The secondary air control loop to adjust the amount of supplied secondary air accord-
ing to the amount of supplied fuel and the oxygen concentration in flue gas.

• The flue gas fan control loop to regulate the desired vacuum in the combustion
chamber.

An important part of the block diagram in Figure 3 is the combustion optimization
block, which continuously provides correction of the fuel supply and amounts of the
primary and secondary air supplied into the combustion chamber according to actual values
of O2 concentration and CO emissions in the flue gas to reach the complete combustion
with a minimum excess of the combustion air.

Based on the block diagram of the process control system, the automatic control and
remote monitoring system (Figure 4) of biomass combustion was designed and realized.
The basis of this system is an industrial modular process control system ADiS, which is
monitored by the SCADA (Supervisory Control and Data Acquisition) system Promotic.
Process variable sensors (e.g., pressures, temperatures, CO emissions) are connected via
an analog input module with 10 bits A/D converter. In the process control system, we
implemented a procedure for communication with the Lambda probe via the RS232/485
interface and a procedure for communication with the heat meter via an M-BUS interface
for measurement of the boiler output power.
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The wideband Lambda probe LSU 4.2 was used for O2 concentration measurement in
the flue gas. Generally, it is an oxygen analyzer working on the principle of electrochemical
cell. Although the main purpose of this dual cell limiting current sensor use is in car
engines, thanks to its monotonic output signal in the range of λ = 0.7 to theoretically λ = ∞
(air containing 21% O2) and good price, it is capable of being used as a very useful sensor
for combustion monitoring in small and medium-scale boilers, too. The low-cost gas sensor
TGS 816 was used for CO emissions measurement in the flue gas. This is a tin dioxide
semiconductor with low conductivity in clean air. A simple electrical circuit converts
the change in conductivity to an analog output signal that corresponds to increased CO
emissions. The sensor together with the convertor were assembled into the special holder,
which protects the sensor against damage caused by high temperature in the flue and
allows the positioning of such a CO probe for good input of flue gases to the sensor. Due to
the fact that only information about the trend of carbon monoxide emissions (i.e., whether
the amount of CO increases or decreases) is important for the biomass combustion control
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algorithm, such a CO probe serves only for an indicative measurement and not exactly
in ppm or mg/m3. In this way, we have achieved a cost-effective solution to obtain the
dependence of CO emissions on O2 concentration during biomass combustion usable in
the control of small and medium-scale biomass-fired boilers.

4. Results and Discussion

The designed automatic process control and remote monitoring system was experi-
mentally tested in five biomass-fired boiler plants placed in Slovakia where wood chips
boilers of different powers, different types, and different producers are installed. The
online monitoring system allows visualizing the technological process in boilers (graphical
schemes, diagrams, trends, and reports), to evaluate the quality of the combustion process
and to change the control parameters online. An example of the graphical visualization
of one monitored wood chips boiler is presented in Figure 5. Online monitored process
variables can be seen, such as for example:

• The boiler power output 171 kW;
• The O2 concentration 8.6% and CO emissions 22 ppm in the flue gas;
• The vacuum pressure 30.0 Pa;
• The temperatures before and after the heat exchanger: 282.4 ◦C and 153.0 ◦C, the ash

temperature 41.7 ◦C;
• Fans revolutions (in percentage of nominal): the primary air 27.0%, the secondary air

11.2%, the flue gas 32.6%.
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Next, we analyzed the monitored data in more detail. The implemented control system
makes it possible to evaluate the dependence of the CO emissions stated as a percentage
of the CO sensor operating range (approximately 1000 ppm) on the O2 concentration in
the flue gas also given in percentage at various user-set time intervals. It can be seen in
Figure 6 that on 21 February, combustion ran mostly in a 7–9% O2 concentration interval in
the flue gas, which is in the required optimal range of 5–10%.

In Figure 7, time courses of some monitored process variables can be seen. The x-axis
shows the real time (from 5:00 to 6:00). On the y-axis, we can monitor selected process
variables: the boiler output water temperature in ◦C, the flue gas temperature in ◦C, the
primary air fan in % of nominal revolutions, the O2 concentration in %, the CO emissions
in % of the sensor range, the fuel supply expressed as the ratio of the filling time to the sum
of the filling time, and the standing time of the supply conveyor.
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The scale on the y-axis depends on the currently marked variable. The user can select
the monitored variable in the upper part of the window by checking the selection. In the
lower part, the user sets the time interval with the possibility of saving the data history.
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In the following, we focus only on the analysis of the measured values of O2 concen-
tration, CO emissions, and the related control of the fuel supply in order to achieve high
efficiency with low fuel consumption and low CO emissions. As an example, the measured
values recorded from 5:11 to 5:26 have been selected (Figure 8). The point of interest is the
time 5:16:36, where we can see the response of the control algorithm to a change (deteriora-
tion) in the fuel quality or an increase (above the optimum value) of the fuel amount in
the combustion chamber. As a result, the quality of combustion deteriorated, the carbon
monoxide emissions (green color) started to increase, and the oxygen concentration (yellow
color) in the flue gas started to decrease. The control system responded to this situation by
reducing the fuel supply (blue color), which was reflected in the fact that around 5:18, the
CO and O2 values were stabilized again. The fuel supply was not completely interrupted
because the combustion process stabilized in a short time.

Processes 2021, 9, x FOR PEER REVIEW 13 of 16 
 

 

 
Figure 8. The combustion stabilization by the fuel supply control. Identification of variables: yellow line—the O2 concen-
tration, green line—the CO emissions, dark blue line—the fuel supply. 

Finally, we analyze in more detail a problem in which the new fuel introduced into 
the furnace does not fully enter a burning phase at the low oxygen level that is prescribed 
at the end of a burning phase. This state can be seen in Figure 9, where the control system 
due to decreasing the flue gas temperature (red line) continuously has been increasing the 
fuel supply (blue line). However, due to large amounts of the new fuel in the furnace, the 
O2 concentration (yellow line) began to decrease at about 6:21:30, and after that, the control 
algorithm started to decrease the fuel supply. At about 6:22:00, the CO emissions (green 
line) began to increase (a smoldering partial combustion produced more CO), and the 
control algorithm increased the airflow (turquoise line) to get the new material to start 
burning, and subsequently, the flue gas temperature started to increase. At about 6:23:00, 
the CO emissions began to decrease, and the control algorithm started to decrease airflow. 
The trigger level to adding more air was a positive derivative of the CO emissions trend 
function and to decrease in the air stream its negative derivative. In this way, the burning 
process was stabilized until about 6:25:00. 

Figure 8. The combustion stabilization by the fuel supply control. Identification of variables: yellow line—the O2

concentration, green line—the CO emissions, dark blue line—the fuel supply.

On the other hand, at about 5:13, there was a sudden deterioration in the quality of
the combustion process (a sharp decrease in O2 concentration and a subsequent sharp
increase in CO emissions) and even for a longer time period. In this case, the control
system responded by completely stopping the fuel supply and restoring it only after the
combustion stabilized. A similar case but with a lower intensity of deterioration in the
quality of combustion occurred at a time just after 5:21.

Finally, we analyze in more detail a problem in which the new fuel introduced into
the furnace does not fully enter a burning phase at the low oxygen level that is prescribed
at the end of a burning phase. This state can be seen in Figure 9, where the control system
due to decreasing the flue gas temperature (red line) continuously has been increasing
the fuel supply (blue line). However, due to large amounts of the new fuel in the furnace,
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the O2 concentration (yellow line) began to decrease at about 6:21:30, and after that, the
control algorithm started to decrease the fuel supply. At about 6:22:00, the CO emissions
(green line) began to increase (a smoldering partial combustion produced more CO), and
the control algorithm increased the airflow (turquoise line) to get the new material to start
burning, and subsequently, the flue gas temperature started to increase. At about 6:23:00,
the CO emissions began to decrease, and the control algorithm started to decrease airflow.
The trigger level to adding more air was a positive derivative of the CO emissions trend
function and to decrease in the air stream its negative derivative. In this way, the burning
process was stabilized until about 6:25:00.
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5. Conclusions

The article dealt with the possibilities of monitoring and controlling the biomass
combustion process in small and medium-scale boilers not only based on the oxygen
concentration sensing in the flue gas (as it is currently solved as standard especially in
medium-scale wood chips-fired boilers) but also on the trend of carbon monoxide emissions.
Their presence in the flue gas results directly from the chemical reactions of combustion,
but the level of concentration depends on several factors, such as the wood quality, the
combustion chamber construction, the type of boiler, and so on.

The designed and tested control algorithms use information about the trend of CO
emissions in the flue gas to continuously evaluate the dependence of these emissions on the
O2 concentration. In this way, the proposed and verified control of the biomass combustion
process with the aim of keeping the O2 concentration as low as possible (to reach low flue
gas energy losses) has successfully ensured an important condition for the quality of the
combustion process that CO emissions do not exceed the permitted values for small and
medium biomass-fired boilers. This was achieved for these standard parameters of wood
chips: moisture content 35–45%, size 35–40 mm. The implemented control system and
algorithms have been even able to ensure a required combustion quality of wood chips
with a moisture content of up to 50% and for different types of wood: fir, beech, and oak.

Further research works will focus on the implementation of the newest CO sensors [32]
and combination probe [33] into the biomass combustion process control system and
modification of the implemented algorithms, including their testing in the real operation of
the wood chips-fired boilers.
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