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The interaction of electromagnetic waves with a spherical metal nanoparticle is studied in this work.
Within the model of a finite spherically symmetric potential well, the dimensional dependence of the Fermi
energy of conduction electrons is calculated. It has been shown that taking into account the model of a finite
spherical potential well leads to a decrease in the value of the Fermi energy, while the general character of
the size dependences is preserved. In the diagonal response approximation, the expressions are obtained and
the diagonal components of the optical conductivity tensor of a spherical metal nanoparticle with radius ro
are calculated. The influence of the variation of the effective radius and the material of a spherical nanopar-
ticle on the frequency dependences of the real and imaginary parts of the optical conductivity has been in-
vestigated. By comparing the results of calculations of the diagonal component of the optical conductivity
tensor of a spherical nanoparticle and a cylindrical nanowire for Cu, the influence of the dimensionality of
the systems is established. The results of the calculations show a strong dimensional and frequency depend-
ence of the real and imaginary parts of the optical conductivity. The calculations are performed for Ag, Cu
and Al spherical nanoparticles. The differences in the results for Ag, Cu and Al spherical nanoparticles are
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explained by different values of the relaxation time of conduction electrons.
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1. INTRODUCTION

Studies of the optical properties of small metal parti-
cles are traditionally considered relevant [1-3]. First of
all, this is due to their use in optical and electronic de-
vices of new generation, in particular, in the creation of
metamaterials [4], in sensor technology [5], memory
cells [6], high-speed optoelectronics [7] and superlenses
[8]. In addition, metal nanoparticles are directly used in
medical diagnostics [9].

Nowadays, experimental methods have been deve-
loped to study the optical-spectral characteristics of in-
dividual metal nanoparticles [10, 11]. Studies of the op-
tical properties of metal nanoparticles and their ensem-
bles provide important information on the structure of
the electronic levels of the energy spectrum and the po-
sition of the Fermi level in such nanostructures. New
technologies make it possible to obtain ensembles of na-
noparticles with a radius of several tens to hundreds of
nanometers in the form of flattened or elongated ellip-
soids of rotation, disc-shaped forms, etc. [12, 13]. The
simplest case in the study are spherical nanoparticles.
However, obtaining particles identical in their parame-
ters still remains an unsolved problem.

Metal nanoparticles have unique optical and spectral
properties. Varying the shape and size of small particles
can significantly enhance the optical response of low-di-
mensional systems [14-17]. The spectroscopic properties
directly depend on the environment in which the nano-
particles are located [18]. Due to the application of metal
or semiconductor shells to the dielectric core, it is possi-
ble to regulate the position and peak of resonant absorp-
tion in such structures.

The basic parameters for calculating the spectra of
metal nanoparticles are the real and imaginary parts of
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the optical conductivity. Theoretical works devoted to the
study of the optical properties of metal nanoparticles are
based on the analysis of both classical [19] and quantum-
dimensional effects [20, 21]. A comparison of different
quantum-mechanical approaches which allow to study
the optical response of nanoobjects is given in [22]. One of
the theories that considers the reaction of nanoparticles
in the form of parallelepipeds to an external electromag-
netic field is the Wood-Ashcroft theory [23].

In this work, in the framework of the diagonal re-
sponse to an electromagnetic wave, the diagonal compo-
nents of the optical conductivity of a spherical metal na-
noparticle are calculated taking into account the dimen-
sional dependence of the position of the Fermi level in the
metal. For this reason, the approach [23] is used, which is
adapted for ultra-thin films and wires in [24]. This model
can be used to study a dielectric particle covered with a
thin layer of metal or semiconductor shell.

2. BASIC RELATIONS

The current induced by an electromagnetic wave
with a frequency o and a wave vector q is defined by the
formula:

Jw =20,,(9,0)E,, €))

where oy 1s the conductivity tensor, and E, are the elec-
tric field components.

Using the results of [24], the diagonal components of
the conductivity tensor can be represented as
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where e is the electron charge; n is the density of con-

duction electrons; Q= 47rr03 /3 is the volume of the par-

ticle; i=+-1; u=x,v,2; m, is the mass of an electron;

fi= [exp((si

state with an energy ¢;;

—gF)/k,BT)-Q—lT1 is the fill factor of the
i) = ) and (j|=(n',l'm’

are the vectors of the initial and final states; &, =& —¢;

< j‘ D, ‘l> is the matrix element of projections of the mo-

mentum operator and 7'is the temperature. Further, we
assume that 7'=0.

It is assumed that the conduction electrons of the na-
noparticle are located in a spherically symmetric rectan-
gular well with a depth U, < 0. In this case, the solution

of the Schrodinger equation has the form
(//nlm (7‘,6,¢) =Rnl (r)Ylm (9,(/)), (3)

where the radial dependence of the wave function is

o {W

B h" )(m r),

r<r; @

>y,

=k 2y, Dk = ,¢2m [U|, Jj, is the spherical Bes-

sel function of the /-th order, hl( ) is the spherical Hankel

function of an imaginary argument. The subscript
n=1,2,... enumerates the roots of the characteristic
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equation for a given [ value, which follows from the con-
dition of continuity of the logarithmic derivative of the
wave function at the well boundary:

.y (1) (2
Jl(kner) _ hz( )(1%nlr0)
nl . —"nl .
Ji (kner) hl(l) (mnl 7"0)
where the prime denotes differentiation with respect to

the entire argument.
Spherical harmonics are described by the expression

) ®)

20+1(I-m)!

Yin(0:0) =\ (1+m)!

P (cos ) el (6)

where m=0,+1,+2...+1 , and P"(cos6) is the associ-

ated Legendre function.

By using formulas (3)-(6), after rather cumbersome
transformations, the matrix elements of different projec-
tions of the momentum operator can be expressed in the
form:
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symbol.

It is easy to see that, for a fixed direction of polariza-
tion, the summation in (2) over all m (and m’) does not
depend on the direction. Therefore,
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Then, the squared matrix element of the projection
of the momentum operator (7) is also independent of the
direction and has the form:

2

i>‘2 :%{l//f )51 1l +(l+1) U+ )5l+1z} (8)

(i,

Given the absorption by substitution @ — @w+1i/7 (r
is the relaxation time) in expression (2), we obtain the
formula for the diagonal component of the optical con-
ductivity

0, =0opr{l+S(om)}, )
where
2 ois2
e, (8 it 4 1 2 a)j
T T 2
S(on) =23 —inlf
Nm, ij &2 — 2’ +£2 N 4h'ie® ‘ g
ij 2 2
Opp = 0'(0)11:% is the Drude formula and

0'(0) = ezﬁr/ m, is the static conductivity.

The real and imaginary parts of the optical conduc-
tivity can be finally written as:
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where k2 =2mw/h, k?=2m,/ht, and the fill factor is
approximated by the step function f,,, =©(gp—¢,,,)-

The diagonal component of the conductivity tensor is
calculated by formulas (10) and (11) using expression (8)
for the squared matrix element of the projection of the
momentum operator.

We obtain the transcendental equation for determi-

ning the Fermi energy &, [25]:

_ * 4 . 7KE
nQ =Y —(1-coszx)y sin—"L
k=1 TK n,l &R

12)

It is assumed that the density of conduction electrons
in a nanoparticle is the same as in an infinite metal.
Summation is performed over all n and [/ for which

2

En1 =

—— 7 <& (14)
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3. RESULTS OF THE CALCULATIONS AND DIS-
CUSSION

The calculations were performed for electron concen-
trations 7 = (47[7‘53/3)_1 , where 7, =3,02a,; 2,67q, and
2,07a, (a, is the Bohr radius) for the Ag, Cu and Al

metals, respectively.

Fig. 1 shows the size dependences of the Fermi ene-
rgy of Ag and Al nanoparticles. These dependences ex-
hibit an “oscillatory” behavior. Taking into account the
model of the finite potential well leads to a decrease in
the value of the Fermi energy level. Increasing the ra-
dius of the particle leads to a decrease in the period and
amplitude of oscillations, the values of which approach
the value of the Fermi energy in a 3D metal
(gFU = hgkf«“ /2me).

The specific features of the size dependences of the
Fermi energy for Ag and Al nanoparticles are determined
only by different values of electron concentration n of
these metals. Compared to the Ag particle, the scale of the
oscillation period for the Al particle is smaller, because
the root distribution density kn: is higher.

Fig. 2 shows the frequency dependences of Ag nano-
particles with a radius 7 =1 and 2 nm (curves 1, 2 and

3, 4, respectively). At such radii, the peaks correspond to
transitions between the size quantization levels. Taking
into account the model of the finite potential well
(dashed curves in Fig. 2), all peaks are shifted to lower
frequencies. The reason is the decrease in energy levels,

as a result of which the distance between them de-
creases and the optical transitions begin at lower fre-
quencies.

Increasing the radius also shifts to lower frequen-
cies, and the frequency range occupied by the peaks de-
creases. The peaks begin to merge with each other, and
their number decreases. The position of the peaks is pre-
dictable, even though the spectrum of k. is rather com-
plex.

For example, we determine for Ag nanoparticle the
position of the peak with the highest height in the de-
pendence of the quantity Re O -
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Fig. 1 — Size dependences of the Fermi energy for Ag and Al na-
noparticles (solid lines are the model of the infinite potential well;
dashed lines are the model of the finite potential well)

The height of the peaks is proportional to the square
of the matrix element of the operator p . » and the ma-

trix element has a maximum value at n'=n since the
corresponding integral in (8) under this condition is
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maximum. Thus, the maximum value of Re O is at-

tained at [=0 and n'=n=n;. Assuming that

27 1/3 .
ky = ky, =(37r n) , we find that ny~kpr/7=3 for
Ty =1 nm. As a result,

U (k§1 _kaz‘,o) _ U (/1/32,1 _753?,0)

2
2m, 2m, 1§

ho . =

max

=1,14 eV.

An error of about 10 % is due to the assumption of a
uniform distribution of levels.

4 T T

Reo,,

ImG,,

fio, eV

Fig. 2 — Frequency dependences of the real and imaginary
parts of the optical conductivity of the Ag nanoparticle: solid
lines are the model of the infinite potential well; dashed lines
are the model of the finite potential well. The radii of nanopar-
ticles are (1, 2) ro=1nm and (3, 4) ro =2 nm

Let us compare the conductivity tensor components
in order of magnitude for the Ag nanoparticle. We take

into account that ¢; =7, Ho® << h2/ 72 and that the

following relationships from (9) are valid:

Reo,, = opp ImS(o,7;), (14)
here ImS(w.n,) ~——3 £|(1 5, [i) -
where Im (60,7"0) the%;fl <]‘p#‘1>‘
Then, with the wuse of the expression
272
ky,

D, ‘i>‘2 = (20+1), we obtain

it
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rhké
ImS(a),rO)z%Z(2l+1). 15)
4nrynm, 1

At hw=1,14eV and the frequency of absorption
h/r=0,016 eV we obtain that the static conductivity
5(0)=5,91-10""s" and o, = o(0)/er =0,85-10'%".
Hereinafter e2/2a0h =2,1-10"%s? will be used as a con-
ductivity unit. Then, we have o, =0,41.

Substituting r=4-10"s (for the Ag nanoparticle)
and 7, =1 nm into (15), we obtain ImS(w,7,)=8,1 and
Reo,, =3,2. This value is in good agreement with the

calculated data presented in Fig. 2 (the first maximum
in curve 1). In the macroscopic limit 7 = we have

ReO'W =0, Imo-W =Imoyy.
Fig. 2 demonstrates the important fact that Re O

is nonnegative in the entire investigated frequency
range, while Imo,, is an alternating function of fre-

quency.
Fig. 3 shows the results of Reo,, for metal nanopar-

ticles with similar results for a thin metal wire [24]. For
a wire of radius g, , for a =x,y, the squared matrix el-

ement of the projection of the momentum operator has
the form

(i

Po
“ /(;) = kmncmncmil,n’ I Im?l (kmﬂ‘n’p) Im?l (kmnp)pdp
0

i)\z :?5

P,

pp’ { /F—z)ém—l,m’ +- /Ez)é‘rrwl,m'} ’

¢%mn an BmfrlJ. Kmil (xmil.n’p) Km?l (%mn p)pdp’

Po

where k,, :«/kg -2, I is the Bessel function and
K_ is the Macdonald function. The number n=1,2...

m
enumerates the roots of the characteristic equation for a
given m value:

The differences in the position and size of the peaks
are explained by the different energy spectra of the 0D
and 1D systems. After the recalculation in the 0D sys-
tem, there remains the summation over the quantum
numbers n and [, and, in the case of the 1D system, n
and m.

Assuming  that D, ‘mn>‘2 = th%O / 4 and

Km’n'

>1=2Lk; /7r, we obtain
p

<n'l'

sphere 15
Re O QODZW

wire T
Reo,,

pulnl)f KX+

b, \mn)‘zzpl 6aryn

-1
Qp ij

<m'n'
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For Cu at 1, =p, =1 nm and kF0 =1,36-10"" m-1(

np=4; 1=0...ny;—1) we have

Reo* [Reoyi™ =1,9.

Reg,,

0 L - > et ]
0,5 1 1,5 2

ho, eV

Fig. 3 — Frequency dependences of the optical conductivity real
part of the Cu nanoparticle (solid line) and the Cu nanowire
(dashed line) with radii ro=pp=1nm

3 T T T

ReG/z,u

Fig. 4 — Frequency dependence of the optical conductivity real
part for nanoparticles of various metals: 1 — Ag, 2 — Cu,3 — Al

The frequency dependences of the real part of the op-
tical conductivity for different metals at a fixed particle
radius (ro = 1,5 nm) are shown in Fig. 4. The results ob-
tained are qualitatively and quantitatively different for
Ag, Cu, and Al particles. In particular, in the case of Ag
and Cu nanoparticles, in contrast to Al ones, there are
strong oscillations in almost the entire frequency range
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Onruyna npoBigHiCTh chepUIHO]l MeTaIeBOI HAHOYACTHHKU 3 ypaxXyBaHHIM
po3MmipHoi 3ane:xuocTi eneprii Pepmi

A.O. Kosasnn!:2

1 Hauionanvruil ynisepcumem "3anopisvrka nonimexuika”, 8yn. Kyroscoroeo, 64, 60063 Sanopiscocs, Yipaina

2 Hayroso-supobruyuuii komnsaekce "lekpa’”, ayn. Mazicmpanvha, 84, 69071 3anopiscoca, Yepaina

V¥ po6oTi mocTiasKeHO B3aEMOII0 eJIeKTPOMATHITHIX XBIJIb 31 ChepUIHOI0 METAIeBOK HAaHOYACTHHKOK. B
paMEax Momesi chepuIHO-CUMEeTPUYHOIL IIOTEHINIAHOI SMH KiHIIeBOI IIMOMHM PO3PAX0BAHO PO3MIPHY 3aJIeiK-
uicts emeprii @epmi enexTponis mposigHocTi. [lokasaHo, 110 BpaxyBaHHSA MoAe Il cepUdHOl MOTEHIHNHOI
MU KIHIIEBOI IVIMOMHY IIPU3BOAUTH 10 3MEHIIIeHHA 3HauYeHHs eHeprii Oepwmi mipu 30epiranHi 3arajJbHOTO Xa-
pPaKTepy PO3MIPHHUX 3aJIesKHOCTEN. Y HAOIMKEHH] J1arOHAIBHOIO BIIYKY OTPHMAHO BUPA3U Ta PO3PAXOBAHO
J1aroHaJIbHI KOMIIOHEHTH TEH30pa OITUYHOI IPOBLIHOCTI chepruHOI MeTasIeBoi HAHOYACTUHKY PAIlycoM ro.
JocimsreHo BILUINB Bapialiil BeIUInHY epeKTHBHOIO paaiycy 1 MaTepiaty ceprdHOl HAHOYACTHHKY Ha Jac-
TOTHI 3aJIEKHOCTI JIMCHOI Ta YIBHOI YaCTHH OIrTraHO1 mrpoBiHocTl. [lmsgxom mopiBHAHHSA pe3yabTaTiB po3pa-
XYHKIB JlaroHaJIbHOI KOMIIOHEHTH TeH30pa OIITHYHOI IIPOBLIHOCTI chepryHOI HAHOYACTUHKY Ta IUIIHIPUY-
HOro HaHOAPOTY it Cu BCTAHOBJIEHO BILIMB PO3MIPHOCTI cucreM. Pedysibrat po3paxyHKIB JI€MOHCTPYIOTH
CHJIBHY PO3MIPHY 1 YACTOTHY 3AJIEIKHICTD JIHCHOI Ta YABHOI YaCTHH ONTHIHOI IIpoBigHocTi. O0UncIeHHs mpo-
BeeHi s chepuunnx HaHnodactrHok Ag, Cu i Al. Bigmirnocti B pesysibraTax st cheprUIHAX HAHOYACTH-
HOoK Ag, Cu i Al m0sACHIOIOTHCS PISHUMY 3HAYEHHSIMHU YaCy PeJIAKCAIlll eJIeKTPOHIB IIPOBITHOCTI.

Kmrouosi ciiosa: Exepria ®epmi, Meranesa Hamouactuaka, Onrudysa mpoBigHicTs, PosMipHe KBAaHTYBAHHS.
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