# МІНІСТЕРСТВО ОСВІТИ І НАУКИ КРАЇНИ СУМСЬКИЙ ДЕРЖАВНИЙ УНІВЕРСИТЕТ КОНОТОПСЬКИЙ ІНСТИТУТ

Кафедра електронних приладів і автоматики

Кваліфікаційна робота бакалавра

# Напівпровідникові матеріали, придатні для застосування у гнучкій електроніці

Студент гр. EI-81к

Науковий керівник,

к.ф.-м.н., ст. викладач

М.О. Данильченко

М.М. Іващенко

Конотоп 2022

#### ΡΕΦΕΡΑΤ

**Об'єктом дослідження** даної кваліфікаційної роботи є фізичні процеси, що протікають у напівпровідникових матеріалах, реалізованих у структурах гнучкої електроніки.

Мета роботи полягає у проведенні аналізу джерел стосовно основних властивостей напівпровідникових матеріалів, придатних для реалізації у промислових масштабах.

Робота складається із вступу, трьох розділів та висновків. У першому розділі наведено огляд характеристик напівпровідникових структур та базових моделей зарядопереносу. У другому розділі розглядається методика одержання Гнучких напівпровідникових сполук. У третьому розділі приведений аналіз результатів, одержаних іншими авторами, які стосуються морфології поверхні та оптичних характеристик.

Робота викладена на 29 сторінках, у тому числі включає 15 рисунків, 2 таблиці, список цитованої літератури із 26 джерел.

КЛЮЧОВІ СЛОВА: НАПІВПРОВІДНИК, ЕЛЕКТРОНІКА, ГНУЧКИЙ, РІСТ, ОБРОБКА

## **3MICT**

|                                                                                                       | C.                   |
|-------------------------------------------------------------------------------------------------------|----------------------|
| ВСТУП                                                                                                 | 4                    |
| РОЗДІЛ 1 ФІЗИЧНІ ВЛАСТИВОСТІ ТА ХІМІЧНИЙ<br>Напівпровідникових сполук, придатних для г<br>Електроніки | СКЛАД<br>НУЧКОЇ<br>5 |
| 1.1. Основні фізичні властивості сполук CZTS                                                          | 5                    |
| 1.2. Основні фізичні властивості та застосування сполуки $Sn_xS_y$                                    | 10                   |
| 1.3. Сонячні елементи на основі плівок CZTS                                                           | 14                   |
| РОЗДІЛ 2 МЕТОДИКА ОТРИМАННЯ ПЛІВКОВИХ СТРУКТУ                                                         | <b>P</b> 17          |
| 2.1. Методика отримання плівок чотирикомпонентних сполук                                              | 17                   |
| 2.2. Формування та нанесення плівок CZTS методом спрей-піролізу                                       | 19                   |
| РОЗДІЛ З МОРФОЛОГІЯ ПОВЕРХНІ ТА ОПТИЧНІ ОСОБЛИ                                                        | IBOCTI               |
| МАТЕРІАЛІВ ГНУЧКОЇ ЕЛЕКТРОНІКИ                                                                        | 20                   |
| 3.1. Морфологія поверхні конденсатів                                                                  | 20                   |
| 3.2. Оптичні властивості плівок CZTS                                                                  | 22                   |
| ВИСНОВКИ                                                                                              |                      |
| СПИСОК ВИКОРИСТАНИХ ДЖЕРЕЛ                                                                            | 27                   |

#### ВСТУП

Швидкий прогрес у технології сприяє всезростаючому попиту на електронні пристрої 3 покращеною продуктивністю та новою функціональністю. На теперішній час значний інтерес проявляється до гнучкої електроніки завдяки її потенційному застосуванню у гнучких дисплеях, сенсорах, датчиках, сонячних батареях, генераторах тощо. Важливим є також розробка гнучких медичних пристроїв для постійного моніторингу стану здоров'я людини. Тому, останнім часом розвиток такої електроніки став однією з найбільш актуальних тем у світовій науці. У подальшому це забезпечить розробку недорогих, ефективних та гнучких електронних приладів та пристроїв різного застосування.

Однією із найбільш важливих проблем сучасної електроніки є розвиток енергетики. Однак, сонячної широке використання фотовольтаїчних технологій вимагає розробки ефективних та дешевих сонячних елементів (СЕ) з використанням гнучких підкладок, що дозволить знизити витрати на виробництво. Для забезпечення низьких витрат на виготовлення СЕ потрібне застосування дешевих функціональних матеріалів також та низькоенергетичних технологій.

#### **РОЗДІЛ 1**

## ФІЗИЧНІ ВЛАСТИВОСТІ ТА ХІМІЧНИЙ СКЛАД НАПІВПРОВІДНИКОВИХ СПОЛУК, ПРИДАТНИХ ДЛЯ ГНУЧКОЇ ЕЛЕКТРОНІКИ

#### 1.1. Основні фізичні властивості сполук CZTS

Багатокомпонентні сполуки Cu<sub>2</sub>ZnSnSe<sub>4</sub>, Cu<sub>2</sub>ZnSnS<sub>4</sub> та Cu<sub>2</sub>ZnSn(S<sub>x</sub>Se<sub>1</sub>найбільш сьогодні вважаються одними 3 перспективних x)4 напівпровідникових матеріалів для використання як поглинальні шари тонкоплівкових СЕ. Це обумовлено оптимальною для перетворення сонячної енергії шириною їх забороненої зони  $E_g = 1,0$  eB (Cu<sub>2</sub>ZnSnSe<sub>4</sub>) та 1,5 eB  $(Cu_2ZnSnS_4)$ , високим коефіцієнтом поглинання світла (~10<sup>4</sup>-10<sup>5</sup> см<sup>-1</sup>), *p*типом провідності, великим часом життя носіїв заряду та їх високою рухливістю [1,2]. На відміну від інших напівпровідників, які у наш час використовуються як поглинальні шари сучасних тонкоплівкових СЕ (GaAs, InP, CdTe, CIGS) [3], ці сполуки не містять рідкісних та небезпечних для екології компонентів, а елементи, що входять у їх склад, широко поширені у земній корі та є недорогими у видобутку (рис. 1.1). Окрім цього змінюючи концентрацію сірки та селену у п'ятикомпонентній сполуці  $Cu_2ZnSn(S_xSe_{1-x})_4$ можна змінювати ширину забороненої зони E<sub>g</sub> цього матеріалу точно підлаштовуючи його до можливого максимуму ККД СЕ (рис. 1.2). Залежність ширини забороненої зони твердого розчину  $Cu_2ZnSn(S_xSe_{1-x})_4$  від складу x була визначена авторами робіт [4]. Її традиційно подають у вигляді:

$$E_{g}(x) = xE^{Cu_{2}ZnSnS_{4}} + (1-x)E^{Cu_{2}ZnSnSe_{4}} + cx \cdot (1-x) , \qquad (1.1)$$

де с параметр вигину прямої.

Параметри рівняння (1), згідно з [5], складають  $E_g$  (Cu<sub>2</sub>ZnSnS<sub>4</sub>) = 1,5 eB,  $E_g$  (Cu<sub>2</sub>ZnSnSe<sub>4</sub>) = 0,96 eB, c = 0,08 eB (вигин вгору).



Рисунок 1.1 Вміст деяких елементів у Земній корі та вартість їх видобутку



Рисунок 1.2 – Залежність максимального ККД СЕ від ширини забороненої зони матеріала поглинального шару в умовах освітлення AM1,5G, абсолютно чорного тіла (а), AM1,5G, AM0 (б)

Експериментальні дані, одержані у [6] також свідчать про квадратичну залежність  $E_g$  від x. При цьому параметри рівняння, що описують цю

залежність дорівнюють:  $E_g$  (Cu<sub>2</sub>ZnSnS<sub>4</sub>) = 1,46 eB,  $E_g$  (Cu<sub>2</sub>ZnSnSe<sub>4</sub>) = 0,94 eB, c = -0,19 eB (вигин вниз). Результати робіт [5-7] наведені на рис.1.3.



Рисунок 1.3 Залежність ширини забороненої зони твердого розчину  $Cu_2ZnSn(S_xSe_{1-x})_4$  від його складу згідно з роботами [5] - 1, [6] - 2, [7] - 3

Сполуки Cu<sub>2</sub>ZnSn(S<sub>x</sub>Se<sub>1-x</sub>)<sub>4</sub> (0  $\leq$  x  $\leq$  1) у нанорозмірній формі є перспективними матеріалами для створення робочих елементів термоелектричних перетворювачів енергії, оскільки характеризується низькими значеннями термічної та високими значеннями електричної провідності [8, 9].

Сполуки Cu<sub>2</sub>ZnSnSe<sub>4</sub>, Cu<sub>2</sub>ZnSnS<sub>4</sub> звичайно кристалізуються у кристалічні гратки станіту та кестериту, які відносяться до тетрагональної сингонії. Ці структури відповідають просторовим групам I42m та I4 відповідно. Розташування атомів різних елементів у гратках вказаних сполук наведено на рис. 1.4. Основною різницею між двома поліморфними модифікаціями є розподіл атомів цинку та міді в елементарній комірці напівпровідника. Кожен аніон сірки



Рисунок 1.4 Кристалічні гратки сполук Cu<sub>2</sub>ZnSnS<sub>4</sub> (Cu<sub>2</sub>ZnSnSe<sub>4</sub>) та їх порівняння з халькоперітами

або селену у гратці оточений двома катіонами міді, одним катіоном олова та цинку, в той час як кожен катіон матеріалу оточений чотирма аніонами халькогенів [10].

Гратки станіту та кестериту мають малу різницю енергії перетворення (3-4 меВ/атом), що призводить до складнощів під час вирощування кристалів та плівок цих сполук необхідного фазового складу. Авторами роботи [11] також було одержано поки що мало вивчену кристалічну структуру чотирикомпонентної сполуки типу вюртциту. У таблиці 1.1. наведено сталі кристалічної гратки, об'єми елементарної комірки та ширина забороненої зони кестеритових сполук. На цей час існує великий розбіг у значеннях цих величин, одержаних різними авторами. Встановлено, що параметри кристалічної гратки сполук Cu<sub>2</sub>ZnSnS<sub>4</sub>, Cu<sub>2</sub>ZnSnSe<sub>4</sub> приймають наступні значення:  $a_{Cu2ZnSnS4} = (0,542-0,548)$  нм,  $c_{Cu2ZnSnS4} = (1,082-1,095)$  нм,  $c/2a_{Cu2ZnSnS4} = (0,998-1,001), V_{комCu2ZnSnS4} = (0,317-0,329)$  нм<sup>3</sup>,  $a_{Cu2ZnSnSe4} = (0,565-$ 0,569) нм,  $c_{Cu2ZnSnSe4} = (1,129-1,133)$  нм,  $c/2a_{Cu2ZnSnSe4} = (0,996-0,999), V_{ком}$  $c_{u2ZnSnSe4} = (0,345-0,352)$  нм<sup>3</sup> [12].

Таблиця 1.1 Параметри кристалічної гратки та ширина забороненої зони сполук Cu<sub>2</sub>ZnSnS<sub>4</sub>, Cu<sub>2</sub>ZnSnSe<sub>4</sub>

| Сполука                             | а, нм  | С, НМ  | $V_{\rm unit}$ , HM <sup>3</sup> | $E_g$ , eB | Посилання |
|-------------------------------------|--------|--------|----------------------------------|------------|-----------|
| Cu <sub>2</sub> ZnSnSe <sub>4</sub> | 0,5427 | 1,0848 | 0,3195                           | 1,45       | [12]      |
|                                     | 0,5432 | 1,0840 | 0,3199                           | 1,45       |           |
|                                     | 0,5435 | 1,0822 | 0,3197                           | 1,51       |           |
|                                     | 0,5426 | 1,0810 | 0,3183                           |            |           |
| $CZT(Se_{2,4}S_{1,6})$              | 0,5567 | 1,1168 | 0,3451                           | 1,21       |           |
| $CZT(Se_{3,9}S_{0,1})$              | 0,5668 | 1,1349 | 0,3646                           | 1,03       |           |
| Cu <sub>2</sub> ZnSnS <sub>4</sub>  | 0,5681 | 1,134  | 0,366                            |            |           |
|                                     | 0,5684 | 1,1353 | 0,3668                           | 0,94       |           |
|                                     | 0,5688 | 1,1338 | 0,3668                           |            |           |
|                                     | 1      |        |                                  |            |           |

### 1.2. Основні фізичні властивості та застосування сполуки Sn<sub>x</sub>S<sub>v</sub>

Халькогеніди металів привертають підвищену увагу дослідників, оскільки використовуватися створення різноманітних можуть для оптоелектронних приладів, таких фотоприймачі, CE. детектори, ЯК тонкоплівкові транзистори тощо [16-17]. Бінарна сполука Sn<sub>x</sub>S<sub>v</sub> відноситься до напівпровідникових матеріалів групи A4B6. На основі олова та сірки можливе утворення трьох основних стабільних сполук: моносульфіду олова (SnS), дисульфіду олова  $(SnS_2)$  та секвісульфіду олова  $(Sn_2S_3)$ . Поряд з цим, існування двох метастабільних сполук можливе  $Sn_3S_4$  (3) також тетрагональною структурою) та Sn<sub>4</sub>S<sub>5</sub> зі змінною валентністю. Фазова діаграма стану системи Sn-S представлена на рис. 1.5 [15]. З діаграми видно, що низькотемпературна орторомбічна форма α-SnS може переходити в високотемпературну кубічну форму  $\beta$ -SnS при температурі (875 ± 10) К. Такий фазовий перехід є переходом другого роду при якому відбувається зміщення атомів S уздовж напряму [100].



Рисунок 1.5 Фазова діаграма стану системи сірка-олово [15]

Сполуки  $\beta$  – SnS та SnS<sub>2</sub> плавляться когруентно за температури  $T_m = (1154\pm2)$  К та  $T_m = (1143\pm150)$  К, відповідно, в той час як Sn<sub>2</sub>S<sub>3</sub> плавиться під час перітектичної реакції за температури  $T_m = 1033$  К [16].

Бінарна сполука SnS<sub>2</sub> має структуру типу CdI<sub>2</sub> та складається з щільно упакованих атомних шарів олова розміщених між двома шарами сірки [17, 18]. На цей час відомо більше ніж 200 політипів SnS<sub>2</sub> з яких досліджено лише 21 [19]. Експериментально звичайно спостерігаються лише 3 основні політипи 2*H*, 4*H* та 18*R* [20]. Шарувата структура сполуки SnS<sub>2</sub> утворюється за рахунок поєднання ковалентного і ван-дер-Ваальсових зв'язків. Ця сполука має гексагональну структуру з просторовою групою симетрії  $P_{3m1}$ . В той час як моносульфід олова має шарувату структуру типу NaCl з орторомбічною кристалічною граткою (*a* = 0,432, *b* = 1,11 та *c* = 0,398 нм), що відноситься до просторової групи симетрії  $P_{nma}$  (рис. 1.6) [21].

Значну увагу дослідників привертають плівки сполук SnS та SnS<sub>2</sub> у зв'язку з можливістю їх використання в оптоелектроніці, сенсориці та геліоенергетиці. Це пов'язано з унікальними фізичними властивостями цих матеріалів, які наведені у табл. 1.2.



Рисунок 1.6 Кристалічна структура сполуки SnS

Сполука SnS<sub>2</sub> має *n*-тип провідності, великий коефіцієнт поглинання світла  $\alpha > 10^4$  см<sup>-1</sup> [22] та достатньо високу рухливість носіїв заряду  $\mu = (18-230)$  см<sup>2</sup>/В·с [23]. Оптична ширина забороненої зони цієї сполуки змінюється в інтервалі  $E_g = (2,12-2,44)$  еВ в залежності від структурних особливостей та методу отримання матеріалу [24]. Такі характеристики роблять SnS<sub>2</sub> перспективним для створення тонкоплівкових СЕ, де сполука розглядається як

альтернативний матеріал для заміни традиційного буферного шару CdS [25], та для використання у сенсорній техніці. Також плівки SnS<sub>2</sub> у наш час були успішно використані як матеріал газових детекторів [26], високошвидкісних фотодетекторів [21], літій-іонних [18] та натрій-іонних акумуляторів [22] тощо. Крім того різний тип провідності матеріалів SnS та SnS<sub>2</sub> відкриває можливості для формування гетероструктур *p*-SnS/*n*-SnS<sub>2</sub>, на основі яких можуть бути створені різні прилади електроніки [23].

Одночасно напівпровідникова сполука SnS, що має провідність *p*-типу, є перспективним матеріалом для створення поглинальних шарів тонкоплівкових фотоперетворювачів, замість традиційних шарів CdTe, CuInSe<sub>2</sub> та Cu(In,Ga)(S,Se)<sub>2</sub> [24]. Це пов'язано з тим, що цей матеріал має оптимальну для перетворення сонячної енергії в електричну ширину забороненої зони ( $E_g = 1,3$  eB) [23], яка відповідає максимуму Шоклі-Квайзера [25], а коефіцієнт поглинання видимого світла сполуки складає  $\alpha >$  $10^4$  см<sup>-1</sup> [23]. Саме тому теоретична ефективність CE на основі поглинальних шарів SnS може досягати 33% [25].

До переваг системи  $Sn_xS_y$  відноситься також те, що бінарна сполука є не токсичною, а її складові елементи (S та Sn) дешеві та широко поширені у природі.

В той же час, максимальна ефективність СЕ на основі сполуки SnS сьогодні становить тільки 4,4% [26]. Такий низький ККД пояснюється низькою структурною якістю синтезованого матеріалу, присутністю великої кількості дефектів різного типу та включень вторинних фаз, границя розділу з якими є ефективним рекомбінаційним центром для нерівноважних носіїв заряду, що генеруються світлом. До того ж, сполука  $Sn_xS_y$  має сильну анізотропію оптичних властивостей, що також ускладнює її застосування в різноманітних електронних приладах [26].

| Параметри                                                             | a-SnS                                                                      | 2H-SnS <sub>2</sub>                            |  |  |  |
|-----------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------|--|--|--|
| Кристалічна гратка                                                    |                                                                            |                                                |  |  |  |
| Кристалічна структура                                                 | Орторомбічна                                                               | Гексагональна                                  |  |  |  |
| Стала гратки, нм                                                      | <i>a</i> = 0,43291 нм;<br><i>b</i> = 1,11923 нм;<br><i>c</i> = 0,39838 нм. | <i>а</i> = 0,3648 нм;<br><i>с</i> = 0,5899 нм. |  |  |  |
| Симетрія                                                              | P <sub>nma</sub>                                                           | $P_{3m1}$                                      |  |  |  |
| Густина $\rho_0$ , кг/см <sup>-3</sup>                                | 5,08·10 <sup>3</sup>                                                       | $4,47 \cdot 10^3$                              |  |  |  |
| Теплоємність при 300 К $C_p$ , Дж·моль <sup>-1</sup> ·К <sup>-1</sup> | 45                                                                         | 70,06                                          |  |  |  |
| Електрофізичні властивості                                            |                                                                            |                                                |  |  |  |
| Ширина забороненої зони, $E_{g ind}$ , eB                             | 1,075                                                                      | 2,18                                           |  |  |  |
| Тип провідності                                                       | p                                                                          | n                                              |  |  |  |
| Рухливість електронів $\mu_e$ , $cM^2/B \cdot c$                      | -                                                                          | 51,5                                           |  |  |  |
| Рухливість дірок <i>µ</i> <sub>h</sub> ,<br>см <sup>2</sup> /В·с      | 90                                                                         | -                                              |  |  |  |
| Питомий опір <i>ρ</i> , Ом·см                                         | 0,06                                                                       | 1,11                                           |  |  |  |
| Еффективна маса дірок <i>m</i> <sup>*</sup> <sub>p</sub>              | 0,2 m <sub>0</sub>                                                         | -                                              |  |  |  |
| Еффективна маса електронів <i>m</i> <sup>*</sup> <sub>e</sub>         |                                                                            | 1,8 m <sub>0</sub> [23]                        |  |  |  |
| Діелектрична проникність $\varepsilon / \varepsilon_{\infty}$         | 32/14                                                                      | 17,7/7,57                                      |  |  |  |

Таблиця 1.2 - Основні фізичні характеристики сполук SnS та SnS<sub>2</sub> [25, 26]

#### 1.3. Сонячні елементи на основі плівок CZTS

Перші сонячні елементи на основі сполук Cu<sub>2</sub>ZnSnS<sub>4</sub> та Cu<sub>2</sub>ZnSnSe<sub>4</sub> були отримані лише у 1998 р. і мали ККД близько півтора відсотка (1,6%), при цьому напруга холостого ходу складала 500 мВ, а густина струму короткого замикання - 7,9 мА/см [2-3]. Сьогодні ефективність таких фотоперетворювачів досягає 11,1%. Потрібно відзначити, що поглинаючі шари цих фотоперетворювачів отримані не вакуумним методом (нанесення з розчину гідразину) [3]. Другий результат 9,15% був отриманий на шарах нанесених співвипаровуванням прекурсорів у вакуумі [3, 14]. Еволюція рекордної ефективності СЕ на основі поглинаючих шарів CZTS виготовлених з використанням різних технологічних процесів за роками наведена на рис.1.7.



Рисунок 1.7 - Еволюція рекордної ефективності сонячних елементів на основі поглинаючих шарів CZTS виготовлених з використанням різних технологічних процесів

Як вказувалося, максимальний ККД СЕ був отриманий з використанням поглинаючих шарів які мали нестіхометричний склад. Відповідні плівки повинні бути збагачені цинком (Zn/Sn~1,1-1,2) та збіднені міддю (Cu/(Zn+Sn)=0,80-0,85) [3]. ККД фотоперетворювачів на основі плівок чотирикомпонентних сполук різного складу вказані на рис. 1.8.

Найкращі СЕ з поглинаючим шаром CZTS в наш час отримані на основі багатошарової структури скло/Мо/p-CZTS(Se)/n-CdS/n-ZnO/ITO, де шар CdS отриманий хімічним методом (CBD) [2]. Світлові та темнові вольтамперні характеристики (BAX) таких елементів та переріз плівки CZTS(Se) наведені на рис. 1.8. Нажаль, такі фотоперетворювачі містять важкий метал кадмій. Як наслідок, альтернативні буферні шари були запропоновані у ряді робіт [11].



Рисунок 1.8 – Діаграма ККД фотелектричних перетворювачів

У наш час найкращим альтернативним CdS матеріалом буфера є ZnS і InS, а також оксиди і гідроксиди індію нанесені хімічним методом або методом пошарового атомного осадження [3].



Рисунок 1.9 – Світлові та темнові ВАХ СЕ з ефективністю 11,1% на основі багатошарової структури натрієве скло/Mo/CZTSSe/CdS/ZnO/ITO (a) та SEM зображення перерізу CZTS(Se) плівки на склі з провідним підшаром Мо [2]

Розрив зони провідності CZTS з CdS становить приблизно 0,4 до 0,5 еВ, що трохи більше оптимального діапазону (0-0,4) еВ. Це приводить до зниження ефективності CE [12]. Краща відповідність граток поглинального і буферного шарів спостерігається у випадку використання сполук  $In_2S_3$  та ZnS (O/OH) що дозволяє підвищити ефективність фотоперетворювачів [2]. Однак у наш час рекордні значення ефективності CE з альтернативними буферними шарами є нижчими ніж отримані у випадку використання плівок CdS, отриманих методом CBD

#### РОЗДІЛ 2

#### МЕТОДИКА ОТРИМАННЯ ПЛІВКОВИХ СТРУКТУР

#### 2.1. Методика отримання плівок чотирикомпонентних сполук

Як вказувалося раніше область існування сполук CZTS(Se) досить вузька (рис.1.3), що робить проблематичним їх отримання, особливо у плівковому вигляді. Для нанесення тонких шарів чотирикомпонентних сполук, на даний час, використовуються різноманітні методи [13-14]. При цьому необхідно зазначити, що отриманні зразки в залежності від методу нанесення мають суттєві відмінності в своїх властивостях: оптичних, структурних та електрофізичних.

Методи, що використовують в наш час для отримання чотирикомпонентних сполук можна поділити на безвакуумні та вакуумні. До перших належать метод осадження з водних розчинів, електроосадження, нанесення з рідкої фази, метод піролізу та ін. [13-14]. При нанесенні сполук у вакуумі використовують розпилення (магнетронне та пучками іонів) та нанесення з газової фази (імпульсне лазерне, електронно-променеве, термічне та ін.). Безвакуумні і вакуумні методи суттєво відрізняються затратами на нанесення плівок.

найчастіше чотирикомпонентні Однак. сполуки отримують 3 використанням двохстадійного процесу першим етапом якого є послідовне нанесення плівок металів з наступною сульфідізацією (селенізацією) та багатошарової структури [1-3]. Звичайно відпалом для синтезу чотирикомпонентної сполуки потрібна температура відпалу 500-600 <sup>0</sup>С [3]. При нижчих температурах відпалу при охолодженні до кімнатної крім основної сполуки в системі утворюються вторинні фази CuZn, Cu<sub>3</sub>Sn, Cu<sub>5</sub>Zn<sub>8</sub> [2-3]. Різні послідовності процесу сульфурізації/селенізації прекурсорів для отримання плівок CIGS та CZTS(Se) наведені на рис. 2.1.



Рисунок 2.1 - Різні послідовності процесу нанесення та сульфурізації / селенізації прекурсорів для поглинаючих шарів сонячних елементів на основі CIGS.

Ці ж процеси можуть бути використані для отримання сполуки CZTS

Більш докладно розглянемо вакуумні методи, які дозволяють отримати плівки високої чистоти та якості.

 $Cu_2ZnSnSe_4$ При виготовленні тонких плівок [16-18] був V використаний метод спільного випаровування елементів. Використовувалися чотири джерела для випаровування Cu, Zn, Sn i Se. Нанесення плівок проводилося на скляні підкладки. Швидкість випаровування селену була трохи вищою стехіометричних вимог для складу плівки для того, що б компенсувати його втрати внаслідок повторного ревипаровування 3 підкладки. Під час випаровування, підкладкотримач обертався за допомогою поворотного механізму для того, що б забезпечити однорідність складу плівки.

Для дослідження впливу температури підкладки на ріст плівок CZTSe, були отримані зразки при різних температурах  $T_s = 523$ , 573, 623 і 673 К. Зразу після нанесення, плівки відпалювали в атмосфері селену при повільному збільшенні температури підкладки із швидкістю 10 К хв<sup>-1</sup> до температури 723 К. При цій температурі плівки зберігалися протягом 1 години і потім повільно охолоджувалися до кімнатної температури [13]. Це дозволило отримати шари високої якості. Останнім часом завдяки можливості зниження вартості шарів все більшу увагу привертають безвакуумні методи нанесення чотирикомпонентних сполук. Більш того максимальні ККД СЕ (11,1%) отримані саме з використанням таких плівок [3].

#### 2.2. Формування та нанесення плівок CZTS методом спрей-піролізу

ТП СZTS осаджуються за допомогою методу спрей-піролізу на скляних підкладках з температурою від 723-823 К ( $\Delta = 25$  К, позначення зразків 1-5, відповідно). Початковий прекурсор синтезується на основі ДМСО, і включав у себе CuCl<sub>2</sub>+2H<sub>2</sub>O (Acros Organics, 99%), ZnCl<sub>2</sub> (Acros Organics, 99%), SnCl<sub>2</sub> (Acros Organics, 99%) та CH<sub>4</sub>N<sub>2</sub>S (Acros Organics, 99%) у молярному співвідношенні 2:1:1:8, відповідно. Розчин був перенасичений тіомочевиною для мінімізації дефіциту сірки та окислення в щойно розпиленій тонкій плівці. Усі реагенти та розчинник використовували в початковому вигляді без попередньої очистки. Відстань від розпилювача до сопла складала 20 см. Азот під тиском 2 бар було використано в якості газу-носія. Час напилення одного зразка в неперервному циклі складав 25 хв, або 10 мл початкового прекурсору.

Був також синтезований прекурсор для сполуки CZTGeS з різною концентрацією елементів Sn i Ge, а саме CZT<sub>x</sub>Ge<sub>1-x</sub>S. Початковий прекурсор включав наступні хімреактиви: CuCl<sub>2</sub>+2H<sub>2</sub>O (Acros Organics, 99%, 25 ммоль), ZnCl<sub>2</sub> (Acros Organics, 99%, 12,5 ммоль), SnCl<sub>2</sub> (Acros Organics, 99%, 0-12,5 ммоль), GeCl<sub>2</sub>+C<sub>4</sub>H<sub>8</sub>O<sub>2</sub> (Strem Chemicals, 99%, 12,5-0 ммоль) та CH<sub>4</sub>N<sub>2</sub>S (80 ммоль).

## РОЗДІЛ З

## МОРФОЛОГІЯ ПОВЕРХНІ ТА ОПТИЧНІ ОСОБЛИВОСТІ МАТЕРІАЛІВ ГНУЧКОЇ ЕЛЕКТРОНІКИ

## 3.1. Морфологія поверхні конденсатів

Для дослідження впливу лазерного відпалу на мікроструктуру плівок CZTS був використаний ACM. Зображення ACM від зразків представлені на рис. 3.1.



Рисунок 3.1 – Двовимірні (2D) зображення ACM з плівки CZTS до (Режим 1) та (Режим 2) після лазерної обробки

3 (Режим 1) видно, що при нижчих температурах осадження поверхня плівки має структуру, яка включає в себе невеликі кластери з тріщинами. При поступовому підвищенні температури поверхня стає більш однорідною без видимих великомасштабних дефектів і точкових включень. Після лазерної обробки (рис. 3.1 (Режим 2)) на поверхні всіх плівок спостерігалась агломерація та коалесценція з подальшим утворенням зерен округлої форми, які мали середній діаметр ~ 2 мкм. Також слід зазначити, що перепад висоти вимірювання на відпалених лазером плівках збільшується, що свідчить про витягування зерен в паралельному напрямі по відношенню до лазерного променя. Витягування зерен під дією лазерного відпалу може бути пов'язано з процесом надшвидкого випаровування надлишків сірки у плівках. Зміна температури осадження впливає на параметри середньоквадратичної шорсткості (R<sub>a</sub>) та середньої шорсткості (R<sub>a</sub>) поверхні, де мінімальні значення демонструють плівки, отримані при T = 325 °C та T = 350 °C. З отриманих результатів добре видно, що параметри R<sub>a</sub> та R<sub>a</sub> в Режим 2 суттєво зростають. Це демонструє значну модифікацію поверхні після лазерної обробки. Шорсткість зростає через витягування зерен на поверхні плівок. Як відомо, Гаусівського розподілу висоти статистична теорія показує, для ЩО відношення  $R_a/R_q = (2/\pi)^{1/2} \approx 0.8$  [15].

Для підтвердження результатів ACM були зроблені мікро-знімки поверхонь за допомогою PEM для зразків з найбільш характерною різницею поверхонь, а саме для T = 275 °C та T = 350 °C (зразки 2 та 5). Результати представлені на рис. 3.2.



Рисунок 3.2 – Мікро-знімки поверхонь плівок CZTS, отриманих при T = 275 °C (а, б) та T = 350 °C (в, г) та відпалених лазером

Отримані мікрознімки добре корелюють з зображеннями ACM для відповідних плівок. У той же час на рис. 3.2 добре видно, що оброблені лазером плівки мають пористу структуру. Оскільки лазерна обробка проводилась у атмосфері повітря, то причиною виникнення пор можуть бути пари газу діоксиду сірки SO2, які виникають в процесі спалення надлишків сірки у плівці. Швидке вивільнення газів SO2 з плівки робить її структуру пористою і сприяє збільшенню висоти новоутворених зерен. Подібна структура має високий потенціал для використання сполуки CZTS для фото каталітичних процесів [20], в газових сенсорах [21], та в якості абсорбуючого шару у двох-перехідних CE [22].

### 3.2 Оптичні властивості плівок CZTS

Для надійного визначення оптичної ширини забороненої зони за спектрами пропускання і відбивання розраховувалися спектри поглинання матеріалу і будувалися залежності  $(\alpha h v)^2$  від hv (рисунок 3.3).



Рисунок 3.3 – Оптична ширина забороненої зони зразків CZTS до (а) і після (б) лазерної обробки

Значення ширини забороненої зони опромінених зразків добре корелюють з літературними даними [15-18] для плівок, отриманих хімічними методами осадження. Проте ці величини значно вищі довідникових даних для неопромінених зразків (T = 275 °C, 300 °C, 350 °C), що пов'язано з малим розміром зерен зразка, близьким до радіусу Бора [15].

Оптичні властивості плівок CZTS вимірювали за допомогою фотоспектрометра UV-Vis-NIR. На рис. 3.4 представлені спектри пропускання від плівок CZTS, осаджених при надвисоких температурах (723-823 К).



Рисунок 3.4 – Спектри пропускання ТП CZTS (зразки 1-5)

Як видно з рис. 3.4, спектри пропускання від усіх зразків не перевищують 60%, що показує на гарний потенціал цих зразків для використання в якості поглинаючого шару в СЕ. Зразок 5, осаджений при максимальній T = 823 К, показує найнижчі значення коефіцієнту пропускання, який не перевищує 42 %.

Для зразків CZTS 1-5 були проведені додаткові дослідження спектрів абсорбції. Отримані результати показані на рис. 3.5. Тенденція до зменшення абсорбції з збільшенням температури осадження плівок, показана на рис. 3.5.

Зовнішній вигляд спектрів схожий з тенденцією на рис. 3.11 для аналогічних плівок. Однак в даному випадку найнижчі значення абсорбції має зразок 2, отриманий при T = 748 К. Його максимальні значення не перевищують 2,5 умовних одиниць, в той час як для всіх інших зразків у цьому досліді максимальні значення абсорбції знаходяться в діапазоні від 2,75 до 3,25 умовних одиниць.



Рисунок 3.5 – Спектри поглинання ТП CZTS (зразки 1-5)

Розраховані значення ширини забороненої зони для зразків 1-5 CZTS знаходяться в межах 1,56 – 1,64 еВ, що відповідає повідомленим теоретичним та експериментальним значенням [157-158].

#### ВИСНОВКИ

Широке використання фотовольтаїчних технологій вимагає розробки ефективних та дешевих сонячних елементів (СЕ) з використанням гнучких підкладок, що дозволить знизити витрати на виробництво. Для забезпечення низьких витрат на виготовлення СЕ потрібне також застосування дешевих функціональних матеріалів та низькоенергетичних технологій. Кестеритові матеріали р-типу провідності, як поглинальні шари СЕ (наприклад,  $Cu_2ZnSn(S_xSe_{1-x})_4)$ , є більш перспективними для реалізації низької вартості приладів, ніж прилади на основі плівок CdTe та Cu(In,Ga)Se<sub>2</sub> (CIGS), оскільки вони виготовляються із використанням широко поширених у земній корі та недорогих при видобутку хімічних речовин. Важливим також є те, що всі складові елементи сполуки нетоксичні. Завдяки таким особливостям фотоперетворювачі цього типу відносяться до СЕ третьої генерації. Дослідження таких матеріалів проводиться багатьма групами науковців в різних країнах світу. Основна увага цих робіт зосереджена на розробці технологічних умов росту плівок з використанням різних методів осадження та вивченню їх структурних та морфологічних властивостей. Однак, при цьому недостатньо уваги приділяється детальному вивченню природи різного типу дефектів в плівках Cu<sub>2</sub>ZnSn(S<sub>x</sub>Se<sub>1-x</sub>)<sub>4</sub> та їх впливу на фізичні властивості матеріалу.

#### СПИСОК ВИКОРИСТАНИХ ДЖЕРЕЛ

The path towards a high-performance solution-processed kesterite solar cell /
D. B. Mitzi, O. Gunawan, T.K. Todorov [et al.] // Solar Energy Materials & Solar
Cells. - 2011. - V.95. - P.1421-1436.

2. Abermann S. Non-vacuum processed next generation thin film photovoltaics: Towards marketable efficiency and production of CZTS based solar cells / S.Abermann // Solar Energy. – 2013. –V.94. – P. 37–70. 112 41.

3. Poortmans J. Thin film solar cells: Fabrication, characterization and application / J. Poortmans, V. Arkhipov. – Leuven, Belgium: John Wiley & Sons, Ltd, IMEC, 2006. – 471 p.

Ito K. (ed.). Copper zinc tin sulfide-based thin-film solar cells. – John Wiley & Sons, 2014.

5. He J. et al. Composition dependence of structure and optical properties of  $Cu_2ZnSn(S,Se)_4$  solid solutions: an experimental study //Journal of Alloys and Compounds. – 2012. – V. 511, No. 1. – P. 129-132.

6. Sheleg A. U. et al. Crystallographic and Optical Characteristics of Thin Films of  $Cu_2ZnSn(S_xSe_{1-x})_4$  Solid Solutions //Journal of Applied Spectroscopy. – 2014. – V. 81, No. 5. – P. 776-781.

7. I.V. Bondar, The band gap of  $Cu_2ZnSn (S_xSe_{1-x})_4$  solid solutions // Sem. Phys. and Tech. – 2015. – V. 49, No. 9. – P. 1180-1183.

8. Ashfaq A. et al. Tailoring the thermoelectric properties of sol-gel grown CZTS/ITO thin films by controlling the secondary phases // Physica B: Condensed Matter. – 2019. – V. 558. – P.86-90.

9. Wei K. et al. Enhanced thermoelectric properties of  $Cu_2ZnSnSe_4$  with Gadoping // Journal of Alloys and Compounds. – 2015. – V. 650. – P.844-847. 10. Chen S. Crystal and electronic band structure of  $Cu_2ZnSnX_4$  (X = S and Se) photovoltaic absorbers: First-principles insights / S. Chen, X.G. Gong, A. Walsh [et al.] // Appl. Phys. Lett. – 2009. – V. 94, No 4. – P. 041903(3pp).

11. Wurtzite Cu<sub>2</sub>ZnSnSe<sub>4</sub> nanocrystals for high-performance organic-inorganic hybrid photodetectors / J.J. Wang, J.S. Hu, Y.-G. Guo [et al.] // NPG Asia Mater. – 2012. – V. 4. – P. e2(6pp).

12. Effect of copper salt and thiourea concentrations on the formation of Cu<sub>2</sub>ZnSnS<sub>4</sub> thin films by spray pyrolysis / Y.B. Kishore Kumar, P. Uday Bhaskar, G. Suresh Babu [et al.] //Phys. Status Solidi A. – 2010. – V. 207, № 1. – P. 149-156.

Rau U., Werner J. H. Radiative efficiency limits of solar cells with lateral band-gap fluctuations // Applied Physics Letters. – 2004. – V. 84, №. 19. – P.3735-3737.

14. Timo Wätjen J. et al. Direct evidence of current blocking by ZnSe in  $Cu_2ZnSnSe_4$  solar cells //Applied Physics Letters. - 2012. - V. 100, No. 17. - P.173510.

15. Redinger A. et al. Influence of S/Se ratio on series resistance and on dominant recombination pathway in  $Cu_2ZnSn(SSe)_4$  thin film solar cells //Thin solid films. – 2013. – V. 535. – P. 291-295.

16. Siebentritt S., Schorr S. Kesterites—a challenging material for solar cells // Progress in Photovoltaics: Research and Applications. – 2012. – V. 20, №.5. – P. 512-519.

17. Peter Y. U., Cardona M. Fundamentals of semiconductors: physics and materials properties. – Springer Science & Business Media, 2010.

18. Lin Y. T. et al. Synthesis and characterization of tin disulfide  $(SnS_2)$  nanowires //Nanoscale research letters. – 2009. – V. 4, No.7. – P. 694-698.

19. Berg D. M. et al. Thin film solar cells based on the ternary compound  $Cu_2SnS_3$  //Thin solid films. – 2012. – V. 520, No. 19. – P. 6291-6294.

20. Liu G. et al. Interface properties and band alignment of  $Cu_2S/CdS$  thin film solar cells //T hin Solid Films. – 2003. – V. 431. – P. 477-482.

21. Vidal J. et al. Band-structure, optical properties, and defect physics of the photovoltaic semiconductor SnS // Applied Physics Letters.  $-2012. - V. 100, N_{\odot}.3. - P. 032104.$ 

22. Sinsermsuksakul P. et al. Atomic layer deposition of tin monosulfide thin films //Advanced Energy Materials. -2011. - V. 1, No. 6. - P. 1116-1125.

23. Sava F. et al. Amorphous  $SnSe_2$  films //Journal of optoelectronics and advanced materials. – 2006. – V. 8, No. 4. – P. 1367.

24. Marcano G. et al. Crystal growth and structure, electrical, and optical characterization of the semiconductor  $Cu_2SnSe_3$  //Journal of Applied Physics. – 2001. – V. 90. – No. 4. – P. 1847-1853.

25. Kashida S. et al. Valence band photoemission study of the copper chalcogenide compounds,  $Cu_2S$ ,  $Cu_2Se$  and  $Cu_2Te$  //Journal of Physics and Chemistry of Solids. – 2003. – V. 64, No. 12. – P. 2357-2363.

26. Franzman M. A. et al. Solution-phase synthesis of SnSe nanocrystals for use in solar cells //Journal of the American Chemical Society. – 2010. – V. 132, №. 12. – P. 4060-4061.