
 
 

iii 

MINISTRY OF EDUCATION AND SCIENCE OF UKRAINE 

SUMY STATE UNIVERSITY 

Faculty of Electronics and Information Technology 

 

 

Department _______________________________________ 

 

 

BACHELOR THESIS 

DETECT AND PREVENT SQL INJECTION VULNERABILITY 

 

 

 

Applicant gr. IN-85aн        David Ekeh 

 

Supervisor,          O. B. Protsenko 

Associate Professor, PhD 

 

 

Head of the department        A. S. Dovbysh 

Professor, DSc 

 

SUMY 2022 



 
 

iv 

MINISTRY OF EDUCATION AND SCIENCE OF UKRAINE 

SUMY STATE UNIVERSITY 

DEPARTMENT OF COMPUTER SCIENCE 

 

Approved ____________ 

Head of department Dovbysh A.S. 

“___”______________ 2022 

 

The task of a bachelor thesis 

Student of the fourth course, group ІН-85aн Ekeh David 

 

Topic: DETECT AND PREVENT SQL INJECTION VULNERABILITY 

Approved by order of the Sumy State University 

№________ of _________ 2022 

 

Explanatory note contents: Informational review, methods, and algorithms, 

implementation, advantages and disadvantages, coding of the SQL. 

 

 

Date of Task                          “_____”____________2022 

Bachelor work supervisor                                Protsenko O.B. 

Received task to be performed                                       Ekeh David



 
 

 

0 

 

ABSTRACT 

 

 

Note:  49 pages, 33 figures, 1 appendix, 22 reference sources. 

The object of study – SQL injection attacks 

Purpose - SQL injection attack is one of the common techniques for hackers 

to attack databases. However, the level and experience of programmers matter quite 

a lot and a considerable number of developers do not determine the authenticity of 

user input data when writing code, which makes the application security risks. SQL 

injection attack falls under one of these techniques of database security attack. The 

database can be protected effectively by the use of database security protection 

technology. This thesis introduces the principle of SQL injection, the main form of 

SQL injection attack, the types of injection attack, and how to prevent SQL injection 

with their examples. 

Results – Implementing a successful SQL injection attack that resulted in 

unauthorized access to sensitive data such as passwords, or personal user information. 

 

Intellij IDEA, C++, SQL Injection Vulnerability, Algorithms 

 

  



 
 

 

1 

TABLE OF CONTENTS 

INTRODUCTION…………………………………………………….……..…… 2 

1 INFORMATIONAL REVIEW……………………………………………...…. 3 

 1.1 SQL Injection Vulnerability…………………………………………..... 3 

 1.2 In-band…………………………………………...……………………... 4 

 1.3  Out-of-band…………………………………………………………....... 4 

 1.4 Inferential or Blind……………………………………………………… 5 

 1.5 Statement Problem…………………………………………………….... 6 

2 METHODS AND ALGORITHMS…………………………………………..... 9 

 2.1 Techniques on How to Test for SQLI.…………………………………... 9 

 2.2 Standard SQL Injection Testing…………………………………………. 11 

 2.3 SQL Injection Examples....……………………………………………… 16 

3 IMPLEMENTATION………………………………………………………… 19 

 3.1 Detection and prevention SQL Injection of SQLite……………………..19 

 3.2 Methods to Detect SQLIa……………………………………………... 22 

 3.3 Definition and Examples of Dynamic Analysis……………………..….. 22 

 3.4 Advantages & Disadvantages of Dynamic Analysis……………............ 23 

 3.5 Definition and Examples of Static Analysis…………………………… 24 

 3.6 Advantages & Disadvantages of Static Analysis………………............. 25 

 3.7 SQL injection prevention techniques………………………………...… 27 

 3.8 Prepared Statements……………………………………………............. 28 

 3.9 Stored Procedures………………………………………………………. 31 

 3.10 Input Sanitizing…………………………………………………....……. 34 

CONCLUSION……………………………………………………………….........36 

REFERENCES……………………………………………………………………..37 

APPENDIX A………………………………………………………………………39 

APPENDIX B……………………………………………………………………....42 



 
 

 

2 

INTRODUCTION 

In this topic, we talk about SQL Injection and understand the terms of SQL 

Injection and how it is used in a database. But before that, we need to understand the 

meaning of SQL? And the role in which it takes part in the database. SQL also known 

as Structured Query Language was created by IBM in the early 1970s. SQL is a 

standardized programming language that is used to manage relational databases or 

data stream management systems and perform various operations to turn massive 

collections of structured data into processed data. It is used by database administrators 

and developers in writing data integration scripts and data analysts trying to set up 

and run analytical queries. 

Also in SQL, there are some RDBMS following: 

 Microsoft SQL Server 

 Oracle 

 MySQL 

 PostgreSQL 

These are some of the extensions to Standard SQL that add procedural 

programming language functionality, such as control-of-flow constructs. 

  

https://en.wikipedia.org/wiki/Procedural_programming_language
https://en.wikipedia.org/wiki/Procedural_programming_language


 
 

 

3 

1 INFORMATIONAL REVIEW 

1.1 SQL Injection Vulnerability 

Now that we know a summary of SQL and its origin, we can move to the main 

topic of SQL Injection. SQL Injection is a test that checks if it is possible to inject 

data into the application so that it executes a user-controlled SQL query in the 

database. How testers know if there’s a SQL injection vulnerability is if the 

application uses the tester’s input to create SQL queries without proper validation, 

and successful exploitation allows an unauthorized user to access or manipulate data 

in the database. During the SQL injection attack consists of the insertion of either a 

partial or complete SQL query via the data input or transmitted from the client 

(browser) to the web application and a tester achieves a successful SQL injection 

attack, they can be able to read sensitive data from the database, modify database data 

(insert/update/delete), execute administration operations on the database such as 

shutdown the Database Management Systems (DBMS), recover the content of a given 

file existing on the DBMS file system, and in few scenarios, there are issues with the 

commands to the operating system. 

It is also a type of injection attack, in which SQL commands are injected into 

data-plane input to affect the execution of predefined SQL commands. 

SQL Injection attacks are separated into three classes: 

  In-band or Classic SQLI. 

  Out-of-band. 

  Inferential or Blind. 

 

https://owasp.org/www-community/attacks/SQL_Injection


 
 

 

4 

1.2 In-band  

In-band also known as classic SQLI, allows data to be extracted by using 

the same channel that is used to inject the SQL code.  

There are two subgroups for in-band injection (classic SQL injection) which 

are Error-based SQLI and Union-based SQLI: 

 Error-based SQL Injection: This is an in-band SQL injection method 

where the intruder performs some series of actions that cause the database to produce 

error messages. The intruder can potentially use the data provided by these error 

messages to gather information about the structure of the database. 

 Union-based SQL Injection: Union-based SQLI is a method that takes 

advantage of the UNION SQL operator, which collects and combines a series of 

multiple “SELECT” statements created by the database in other to get a single HTTP 

response. This response may contain data that can be leveraged by the intruder. 

 

1.3 Out-of-band 

When the attacker can’t use the same channel to launch the attack and gather 

information, rather Data is retrieved using a different channel, or when a server is too 

slow or unstable for these actions to be performed. These techniques count on the 

capacity of the server to create DNS or HTTP requests to transfer data to an intruder. 

 

 



 
 

 

5 

1.4 Inferential or Blind 

Data is not being moved, but the tester can rebuild the information, by sending 

particular requests and watching the resulting behavior of the DB Server, this method 

is called blind SQLi. 

Blind SQL injections may take longer than their counter-part (in-band) for a 

tester to exploit, during the test/attack no data is moved via the web application and 

the tester would be blind during this process. Rather, the tester can re-create the 

database structure by dispatching load, detecting the web application’s response, and 

the following behavior of the database server. Blind SQL injections can be classified 

as follows: 

 Boolean: The tester sends a SQL query to the database prompting the 

application to return a result. The outcome of the test will differ depending on the fact 

that either the query is true or false. Relying on the result, the content within the HTTP 

response will be changed or remain the same. The tester can then work out if the 

message generated a true or false result. 

 Time-based: The tester sends a SQL query to the database, which makes 

the database wait (for seconds) before it can react. The tester can then identify the 

time in which the database takes to react, considering if the query is true or false. 

Relying on the result, an HTTP response will be generated instantly or after a waiting 

period. The attacker can thus work out if the message they used returned true or false, 

without relying on data from the database. 

 

 



 
 

 

6 

 

1.5 Statement of Problem 

The presence of an SQL injection vulnerability permits an attacker to reserve 

instructions immediately to an internet utility's underlying database and subvert the 

supposed capability of the utility. Once an attacker has recognized an SQLIA 

vulnerability, the susceptible utility turns into a conduit for the attacker to execute 

instructions at the database and in all likelihood the host machine itself. SQLIAs are 

a category of code injection assaults that take gain of a loss of validation of consumer 

enter. The vulnerabilities arise when builders integrate hard-coded strings with 

consumer entries to create dynamic queries. If the consumer enter isn't nicely 

validated, attackers can form them enter in this type of manner that, while it's far 

covered withinside the very last question string, elements of the entrance are 

evaluated as SQL key phrases or operators through the database. 

Consider an easy SQL injection vulnerability. The following code builds a SQL 

question by concatenating a string entered through the users with hardcoded strings: 

 String query = "SELECT * FROM items WHERE owner = '" + userName + "'  

AND itemName = '" + ItemName.Text + "'"; 

This query intends to look for all items that fit the item name entered through 

a user. In the instance above, userName is the presently authenticated user and 

ItemName.Text is the input supplied by the user. Suppose an ordinary user with the 

username john enters benefit withinside the net shape. That value is taken from the 

form and included in the query as part of the SELECT condition. The completed query 

will then appear similar to the following:  

SELECT * FROM items WHERE owner = 'john' AND itemName = 'benefit' 

However, since the query is built dynamically by concatenating a consistent base 

query string and a user-supplied string, the query at most behaves exactly if itemName 



 
 

 

7 

does now no longer include a single quote (') character. If an attacker with the 

username john enters the string:  

‘anything' OR 'a'='a  

The following query will be: 

 SELECT * FROM items WHERE owner = 'john' AND itemName = 'anything' OR 

'a' = 'a'  

The addition of the OR 'a'='a' condition brings about the WHERE clause to 

consistently evaluate to true. The query then becomes logically equal to the much less 

selective query: 

 SELECT * FROM items  

The simplified query permits the attacker to examine all entries saved 

withinside the items table, removing the constraint that the query at most returns items 

owned via the authenticated user. In this case, the attacker can examine the processed 

data he oughtn’t to be capable of accessing.  

Now presume that the attacker enters the subsequent:  

‘anything'; drop table items— In this case, the subsequent query is constructed via 

script: SELECT * FROM items WHERE owner = 'john' AND itemName = 'anything'; 

drop table items--' 

The semicolon (;) denotes the conclusion of one query and the beginning of 

another. Many database servers permit more than one SQL statement separated with 

the aid of using semicolons to be performed together. This permits an attacker to 

perform arbitrary commands against databases that allow more than one statement to 

be performed with one call. The double hyphen (--) suggests that the remainder of the 

current line is a comment and ought to be ignored. If the changed code is syntactically 

correct, it will be carried out by the server. When the database server undertakes these 

two queries, it’ll first choose all records in items that equal to the value of anything 



 
 

 

8 

belonging to the user john. Then the database server will drop, or erase the whole 

items table. 

 

  



 
 

 

9 

2 METHODS AND ALGORITHMS 

2.1 Techniques on How to Test for SQLI 

Detection Techniques 

Firstly, in this test, we need to understand when the application interacts with 

a DB Server to access some data. Some examples of cases when an application needs 

to interact with a DB include: 

 Authentication forms: When authentication is performed using a 

web form, odds are that the user credentials are checked against a database that 

contains all usernames and passwords. 

 E-Commerce sites: The products and their characteristics (price, 

description, availability) are very likely to be saved in the database. 

 Search engines: The string is sent forth by the user so it could be 

used in a SQL query in other to extract all relevant records from a database. 

The tester has to create a list of all input fields whose values could be used in 

making a SQL query, including the hidden fields of post requests, and then test them 

separately, trying to interfere with the query and create a flaw. Also, we have to 

review the HTTP headers and Cookies. 

The very first test normally involves the adding of a single quote (‘) or a 

semicolon (;) to the parameter or area under test. The first is used in SQL as a string 

terminator, and if not it is filtered by the application, which would lead to an incorrect 

query. The second is used to end a SQL statement and if it is not also filtered, then it 

is likely to create an error. The result of a vulnerable field might be similar to the 

following (this is a Microsoft SQL Server, which we would use in this case): 



 
 

 

10 

 

Figure 2.1 - Microsoft SQL Server 

Also, comment delimiters (-- or /**/) and other SQL keywords such as 

(AND) and (OR) can be also used to try to change the query. A very simple but often, 

still effective technique is just to insert a string where a number is expected, as an 

error like the following might be generated: 

 

Figure 2.2 - Microsoft SQL Server 

Observe all the responses from the webserver and have a look at the 

HTML/JavaScript source code. Sometimes the error exists inside them but for some 

reason (e.g. JavaScript error, HTML comments, etc) is not presented to the user. A 

full error message, like those in the examples, provides a wealth of information to the 

tester to mount a successful injection attack. Although the applications often do not 

provide so much detail: a simple ‘500 Server Error’ or a custom error page might be 

present, meaning that we need to use blind injection techniques. In any case, it is very 

important to test each field separately: only one variable must vary while all the others 



 
 

 

11 

remain constant, to fully understand which parameters are vulnerable and which are 

not. 

 

2.2 Standard SQL Injection Testing 

Classic SQL Injection 

The diagram below is a simple SQL query 

 

Figure 2.3- simple SQL query  

This type of query is mostly used by a web application to authenticate the user. 

If the query returns a value, then that means that inside the database there’s a user 

with that set of authorization that exists, the user is then allowed to login into the 

system, otherwise, they would be denied access. The values of the input fields are 

normally obtained by the user through a web form. Let’s assume that we insert the 

following statement below 

 

Figure 2.4 - Username and Password values 

Then this query will be altered and would appear as shown below: 



 
 

 

12 

 

Figure 2.5 – Using a GET Technique 

 

Let us assume that the values of the parameters are sent to a server through a 

GET technique, there we can then generate a vulnerable domain, then web site would 

be like this www.example.com, then the request that we may carry out would look 

like the diagram below: 

 

Figure 2.6 - www.example.com 

A brief analysis shows that the query returns a value or a set of values due to 

the condition is always true “OR 1=1”. Thus the system can authenticate the user 

without knowing the username and password. 

SELECT Statement 

The SQL query diagram below: 

 

Figure 2.7 – Using a SELECT STATEMENT 

 

By applying the code from the diagram above to the query below 



 
 

 

13 

 

Figure 2.8 - Description of a product 

When a developer attempts a valid value and the application will return the 

description of a product. The optimal solution in testing if the application is vulnerable 

in this case is to manipulate the logic by using the operators AND and OR. As shown 

below. 

 

Figure 2.9 - AND and OR. 

Presumably, the application might return some text displaying to us that 

there’s no content available or leaving a blank page. The developer can then send a 

true statement and scan if there is a valid result: 

 

Figure 2.10 – Using a True Statement 

Stacked Queries 

Based on the type of API (Application Programming Interface), which the 

web application is using and the DBMS (Database Management System) such as PHP 

+ PostgreSQL or ASP+SQL SERVER may be possible to execute multiple queries in 

a go. 

The SQL query below is a good example 



 
 

 

14 

 

Figure 2.11 - SQL query 

 

 

In the diagram above we can exploit it and the result would be shown below: 

 

Figure 2.12 – A Stacked Queries 

We can assume that this way is possible to execute many queries in a row and 

independent of the first query.  

Fingerprinting the Database 

Although the SQL language is a standard programming language, even so, 

every DBMS has its peculiarity and differs from each other in many aspects such as 

comments line, functions to retrieve data such as user’s names and databases, special 

commands, and features, etc. 

While the developers progress to a more advanced SQL injection exploitation 

method, they also need to know what the back-end database is all about. 

Errors Returned by the Application 

One of the ways to find out what a back-end database is used is by accessing 

the error returned by the application. There are some examples below that show error 

messages 



 
 

 

15 

 

Figure 2.13 - MySql 

Another is a complete UNION SELECT with version (), which can also assist 

in educating the developer in knowing the back-end database. 

 

Figure 2.14 - UNION SELECT 

 

 

Figure 2.15 – Oracle 

 

 

Figure 2.16 - MS SQL Server 



 
 

 

16 

 

Figure 2.17 - PostgreSQL 

 

In a scenario where no error message or a custom error message is displayed 

then the developer can attempt to inject into string fields using varying concatenation 

methods such as: 

 PostgreSQL: ‘test’ // ‘ing’ 

 SQL Server: ‘test’ ‘ing’ 

 Oracle: ‘test’ // ‘ing’ 

 MySql: ‘test’ + ‘ing’ 

 

 

2.3 SQL Injection Examples  

A tester trying to test an SQL injection has to manipulate a standard SQL 

query to exploit non-validated input vulnerabilities in a database. There are many 

ways that this attack vector can be carried out, several of which will be displayed here 

to show us a general idea about how SQLI works. 

https://www.imperva.com/learn/application-security/vulnerability-management/


 
 

 

17 

For example, the above-mentioned input, which pulls information for a 

specific product, can be altered to 

read http://www.estore.com/items/items.asp?itemid=999 or 1=1. 

As a result, in (Figure. 2.18) the corresponding SQL query looks like this: 

 

Figure. 2.18 - eStore database query being altered 

And since the statement 1 = 1 is always true, the query returns all of the 

product names and descriptions in the database, even those that you may not be 

eligible to access. 

Attackers are also able to take advantage of incorrectly filtered characters to 

alter SQL commands, including using a semicolon to separate two fields. 

For example, in (Figure. 2.19) the 

input http://www.estore.com/items/iteams.asp?itemid=999; DROP TABLE 

Users would generate the following SQL query: 



 
 

 

18 

 

Figure. 2.19 - eStore database query using DROP TABLE 

 

As a result, the entire user database could be deleted. 

Another way SQL queries can be manipulated is with a UNION SELECT 

statement. This combines two unrelated SELECT queries to retrieve data from 

different database tables. 

For example, in (Figure. 2.20) the 

input http://www.estore.com/items/items.asp?itemid=999 UNION SELECT user-

name, password FROM USERS produces the following SQL query: 

 

Figure. 2.21 - UNION SELECT statement 

Using the UNION SELECT statement, this query combines the request for 

item 999’s name and description with another that pulls names and passwords for 

every user in the database. 



 
 

 

19 

3 IMPLEMENTATIONS 

3.1 SQLite Injection Attacks 

The SQLite injection can be described as a process of injecting some 

malicious code to gain access to other databases while gaining input from a web 

application. 

Let us assume that there is a registration page where the user needs to enter a 

username, rather than that the user enters SQLite statement instead so that it will run 

on our database and return the data based on their query statement. 

The key aim for SQLite injection attacks is to get protected information from 

their database and to perform some vulnerable actions such as improving the existing 

records, information or deleting/drop tables in the database, etc. 

Normally, these SQLite injection attacks can happen whenever your 

application depends on the user input to build the SQLite query statements. And while 

taking the input from users we need to authenticate that particular data before we send 

it to the database by outlining the pattern confirmation or accepting the input 

parameters in a standard form. 

 

SQLite Injection Attacks Example 

 

Now that we understand how SQLite injection attacks work, we will now see 

how SQLite injection attacks can happen and how we can prevent them with examples 

for that create we need to create a table called “emp_master” in the database using 

the following queries. 



 
 

 

20 

 

Figure 3.1 - emp_master table 

 

Now we will run the following query in (Figure 1.2) to check the records 

of the “emp_master” table. 

 

Figure 3.1 - emp_master table 

Let’s assume that in our web application we are acknowledging the input from 

the user to show user details, during the time the user enters the query as shown below 

then it will return all the records from the table irrespective of employee id. 

 



 
 

 

21 

Figure 3.2 – code that shows user details 

The above (Figure 3.2 – code that shows user details) input will form the query 

as shown below. 

 

Figure 3.3 – SQLIa code 

Here in above (Figure 3.3) query WHERE 1=1 is always returning true and 

in OR operator one operand TRUE means, the whole condition will return it 

as TRUE then it will return all the records from employee table irrespective of 

employee id like as shown in (Figure 3.4). 

 

Figure 3.4 - SQLIa code grants access to user details 

This way hackers can easily get all the sensitive information just by injecting 

a few pieces of code. 

  

To prevent this type of SQLite injection we need to acknowledge the user 

input as a string and then carry out the operation on the database as shown in (Figure 

3.5). 



 
 

 

22 

 

Figure 3.5 - “12 OR 1=1” is used to avoid SQLite injection attacks 

Whenever we run the above query it will return employee details whose 

employee id matches with “12 OR 1=1” this is one of the ways to avoid SQLite 

injection attacks. 

 

3.2 Methods to Detect SQL Injection Attacks 

 Some methods used for detecting SQL injection attacks are listed below: 

 Dynamic analysis 

 Static analysis 

 

3.3 Dynamic Analysis 

Dynamic analysis is an upgrade over static analysis since it can detect the 

vulnerabilities from SQL injection attacks. Also, it’s able to spot several other kinds 

of vulnerabilities efficiently.  

How does it work? By collecting the SQL queries between the client and the 

application, also between the application and the database. After that it then analyzes 

the vulnerabilities, thus using the SQL inject attack codes to understand the 

vulnerability and also without making any adjustments to web applications. Open 

source program such as Paros scans not only SQL injection attacks vulnerabilities, 

but also other vulnerabilities within the web application. Although Paros is not perfect 

because it uses predetermined attack codes to scan, also it uses HTTP response to the 

success rate of the attack.  As Sania locates and extracts SQL injection attack 



 
 

 

23 

vulnerabilities between the web application and databases, it then proceeds to create 

SQL Injection attack codes. After attacking with the created code, it extracts the SQL 

query from the attack. After the normal SQL query is compared and examined with 

the SQL query gathered from the attack using the parse tree, the success rate of the 

attack is confirmed. Since a parse tree is being used, then the Sania can be said to be 

more accurate rather than using an HTTP response verification. The dynamic analysis 

technique is said to be advantageous because no web application tweaking/alteration 

is necessary. Nevertheless, the vulnerabilities found in the web application must be 

physically fixed by the developers and not all of them can be located without 

preplanned attacks. 

 

 

3.4 Table of Dynamic Techniques with Advantages & Disadvantages 

Technique Advantages  Disadvantages  

SQLIMW is a middleware 

specifically designated for the 

detection of SQL injection 

attacks.  

Efficient, 

transparent to the 

programmer 

Limited coverage, bet 

environment is a single-

sign-on system 

SVM for prediction of SQLIA  Low overhead High 

detection rate 

Produce false positives in 

some cases 

TransSQL  Applicable for a 

different platform, 

easy to deploy 

High latency ( because 

every query needs to be 

executed twice) 

Security testing schemes are 

based on automatic test case 

generating and simulated tests.  

Automated, 

effective 

The problem in coverage( 

attack library should be 

improved) 



 
 

 

24 

SQL-IDS ( injection detection 

system)  

No need to change 

on code, low 

overhead, high 

coverage 

Limited to java 

Artificial Neural Network-

based web application firewall 

for SQL injection. 

Independent in a 

matter of platform 

Erroneous results may be 

produced 

 

Examples of Dynamic Tools 

 Abbey Scan 

 Acunetix 

 APIsec 

 App Scanner 

 AppCheck Ltd 

 AppScan 

 AppScan on Cloud 

 Arachni 

 

 

3.5 Static Analysis 

 This method analyzes the SQL query sentence within a web application to 

reduce the chances of SQL injection attacks by detecting and preventing them. It is 

not an accurate detection method because if a corrupted input has the correct type of 

syntax, then the analysis will backfire in recognizing the attack. Also, it requires 

rewriting of web applications, the aim of the static analysis method is not solely by 

detecting and preventing SQL injection attacks but to verify the user’s input type to 

reduce potential SQL Injection attacks.  



 
 

 

25 

The JDBC-Checker uses Java String Analysis (JSA) library to validate the 

real-time user’s input and in turn, prevent SQL Injection attacks. nevertheless, if the 

user inputs malicious data which has the correct type and syntax, then it cannot be 

prevented. Also, we can look at some static techniques with their advantages and 

disadvantages in the table below: 

 

3.6 Table of Static techniques with advantages & disadvantages 

Technique Advantages  Disadvantages  

SAFELI: (MSLI) to 

detect SQL Injection 

Attacks.  

This approach can find 

and detect vulnerabilities 

that can’t be found by 

black-box testing. 

Should add code 

transformation in MSLI. 

Work on Microsoft platform 

only. 

Mining input sanitization 

patterns for predicting 

SQLIVS.  

85% reported a detection 

rate 

High false positive 

An algorithmic approach 

for replacing insecure 

SQL statements in the 

code with a secure ones.  

94% reported accuracy Not active for Java- Code 

transformation Batch queries 

can’t be detected efficiently. 

Automated fix Generator 

SQLIAs  

Fully automated. High 

Efficiency 

Should be supported by code 

transformation. Overhear is 

high Limited to PHP 

Automatic creation of 

SQL injection attacks for 

There is no runtime 

overhead. No need to 

modify the target system. 

Sometimes generate false 

positives. Limited to PHP and 

MYSQL 



 
 

 

26 

uncovering SQL injection 

vulnerabilities.  

Signature and auditing 

method to prevent 

SQLIAs using  

Show low overhead in 

execution. No need for 

code transformation 

It’s restricted to web 

applications only. 

SQL DOM  Show high coverage all 

over SQLIA ( Except 

Stored Procedure) 

Cost high overhead on the 

system. Need a new model for 

programming 

A method for hunting 

SQL injection 

vulnerabilities. 

Effective, the high 

detection rate - Very low 

overhead 

Complex involves different 

stages 

An anomaly-based 

system that uses different 

detection models to detect 

unknown attacks.  

Low overhead - Limited to PHP - Coverage 

problems - Generates false-

negative results 

ASSIST (Automatic and 

Static SQL Injection 

Sanitization Tool.  

Effective, low overhead, 

high detection rate. 

Used for JAVA only, need 

code transformation, produce 

false positive and true 

negatives in some cases 

WebSSAR: Check Input 

Validation against 

preconditioning 

Good for the toy system. Some preconditions may not 

be accurately expressed for 

some filters. 

 

Examples of Static Tools 

 42Crunch 

 Bandit 



 
 

 

27 

 Agnitio 

 Codacy 

 CoGuard 

 Bearer 

 DeepSource 

 

 

3.7 SQL injection prevention techniques 

Stopping SQL injection attacks takes a lot of making sure that none of the 

fields are vulnerable to invalid inputs and application execution. For a beginner 

developer/user, it would be impossible to manually check every page and every 

application on the website, especially when updates would frequent and user-

friendliness would take top priority. 

However, security analysts and seasoned developers suggest a series of 

subsequent points that would guarantee other’s database square can be 

measured well and protected inside the confinement of their server. 

Although, there must be a way to simply sanitize user input and make sure 

that an SQL injection is infeasible.  Sadly, that is not always the case.  There may be 

a series of ways to sanitize user input, from globally applying PHP's add-slashes () to 

everything, which might bring unfortunate results. Then down to implementing the 

sanitization to "clean" variables at the time of assembling the SQL query 

itself.  However, implementing sanitization at the query itself may be a very poor 

coding decision or practice and can be difficult to maintain or keep up to date 

with. This is where database systems have implemented the use of prepared 

statements. 

http://en.wikipedia.org/wiki/Prepared_statement
http://en.wikipedia.org/wiki/Prepared_statement


 
 

 

28 

We can talk about different ways we can prevent Structured Query 

Language Injection Attacks (SQLIAs), with their definitions and their examples as 

well.  

 Prepared Statements 

 Stored Procedures 

 Input Validation or Input Sanitizing 

The image below (Figure 3.6) is a (Java) example that is vulnerable, which 

would allow an attacker to inject code into the query that would be executed by the 

database. The un-validated "customerName" parameter is simply attached to the 

query, which allows an attacker to inject any SQL code they want. Sadly, this 

technique for accessing databases is all too frequent. 

 

Figure 3.6 – Java Database 

 

3.8 Prepared Statements 

How prepared statements can be applied with variable binding (also known as 

parameterized queries or “pre-compiled statements”) should first be taught to all 

developers/users on how to write database queries. The prepared statements are 



 
 

 

29 

simple to write and easier to understand than dynamic queries. Parameterized queries 

(prepared statements) force the developer/user to first define all the SQL code and 

then pass each parameter to the query later. This coding technique allows the database 

to differentiate between code and data, regardless of what user/developer input is 

supplied. 

Prepared statements, makes sure that an attacker cannot change the intent of 

a query, even if SQL commands are incorporated by an attacker/intruder. In the 

example below we will show a secure java prepared statement, if an attacker/intruder 

were to enter the userID of [tom’ or ‘1’=’1] the parameterized query would not be 

vulnerable and would instead search for a username that exactly matches the entire 

string [tom’ or ‘1’=’1]. 

There are some Language specific recommendations used for the prepared 

statement: 

 C# .NET: – uses parameterized queries like [SqlCommand()] or 

[OleDbCommand()] with bind variables 

 Hibernate Query Language (HQL): –  uses [createQuery()] with bind 

variables (also known as named parameters in Hibernate) 

 PHP: – uses PDO with strongly typed parameterized queries (using 

[bindParam()]) 

 Java EE: – uses [PreparedStatement()] with bind variables 

 SQLite: – uses [sqlite3_prepare()] to create a statement object 

In an unlikely situation, prepared statements can harm the performance of the 

database. When faced with this situation, there are some ways to solve it: 

https://www.sqlite.org/c3ref/stmt.html


 
 

 

30 

 strongly validate all data. 

 escape all user-supplied input using an escaping routine certain to 

the user’s database vendor as explained in the below example. It would be more 

effective than using a prepared statement. 

 

Example of a Secure Java Prepared Statement  

The following example code uses a [PreparedStatement], Figure 3.7 is a 

Java implementation of a parameterized query, to run in the same database query. 

 

Figure 3.7 - Secure Java Prepared Statement 

Example of a Secure C# .NET Prepared Statement 

Using the [.NET] is straightforward. Because the creation and execution of 

the query cannot be altered. All that is required to do is simply to pass the parameters 

to the query using the [Parameter.Add()] call as displayed in the diagram below 

(Figure 3.8). 



 
 

 

31 

 

Figure 3.8 - a Secure C# .NET Prepared Statement 

 

3.9 Stored Procedures 

Stored procedures cannot give 100% percent protection from SQL injection. 

Although, there are certain standard stored procedure programming constructs that 

have the same effect as the use of parameterized queries when applied safely, which 

is expected for most stored procedure languages. 

This requires that the developer construct an SQL statement with parameters 

that are automatically parameterized, except if the developer does something which 

is unusually out of the normal way. There is a difference between prepared statements 

and stored procedures which is that the SQL code for a stored procedure can be 

defined and stored in the database itself, and can then be retrieved from the 

application. These two techniques have the same effectiveness in blocking the SQL 

injection so the developer can choose which approach makes the most suitable sense 

for them. 

We should understand that 'Implemented safely' means that the stored 

procedure does not include any potential threat in the dynamic SQL generation. 



 
 

 

32 

Developers do not usually construct dynamic SQL inside the stored procedures. 

Although, this can be done, even so, should be avoided. And If it cannot be avoided, 

then the stored procedure must use input validation or proper escaping as explained 

in other to make sure that all the user-supplied input to the stored procedure cannot 

be used to inject SQL code into the dynamically constructed query. Listeners should 

always look for uses of sp_execute, run, or exec within SQL Server stored 

procedures. Similar survey guidelines are a must for similar functions for other 

vendors. 

I would like to add that there are also several occurrences where stored 

procedures risk is increased. For example, on an MS SQL server, the user can have 3 

main default roles such as db_datareader, db_datawriter, and db_owner. Before 

the existence of stored procedures and they’re coming into use, a database 

administrator(DBA) would give db_datareader or db_datawriter license to the web 

service’s user, based on the requirements. Nonetheless, stored procedures needs 

execute rights, a role that is not accessible from the start. There are some setups where 

the user management is being centralized and has been limited to these 3 roles, cause 

all the web apps run under the db_owner rights so stored procedures can work. 

Normally, this means that if a server is violated by the attacker, they then have full 

rights to the database, where previously they might only have had read-only access. 

 

Example of a Secure Java Stored Procedure 

Figure 3.9 below uses a CallableStatement, the java implementation of the 

stored procedure interface, in other to run it in the same database query. The 



 
 

 

33 

sp_getAccountBalance stored procedure would have to be pre-decided in the 

database and then implement the same functionality as the query defined above. 

 

Figure 3.9 - Java Stored Procedure 

Example of a Secure VB .NET Stored Procedure 

In this example of a secure VB .NET Stored Procedure, it uses a 

SqlCommand, this .NET implementation of the stored procedure interface, to run it 

in the same database query. The sp_getAccountBalance stored procedure would 

have to be pre-decided in the database and then applied in the same functionality as 

the query defined above. 

 

Figure 3.10 - VB .NET Stored Procedure 

 



 
 

 

34 

3.10 Input Validation or Input Sanitizing 

Different sections of the SQL queries aren't in their valid locations for the use 

of bind variables, like names of tables or columns, and let’s not forget the sort order 

indicator (ASC or DESC). In similar scenarios, input validation is often the suitable 

defense. considering the names of tables or columns, in theory, these values come 

from the code, and not from the developer’s parameters. 

If the user parameter values are being used for targeting different table names 

and column names, then we can assume that the parameter values should be mapped 

to the right/expected table or column names to make sure invalidated user input 

doesn't end up in the query. This can be a case of poor design and a full reconstruction 

should be considered if there’s a chance to do so. 

 

Example of table name validation. 

 

Figure 3.11 - Table Name Validation 

The tableName in the above diagram shown as (Figure 3.11), can then be 

directly included in the SQL query, for a while now it is known to be one of the valid 

and expected values for a table name in the query. We should bear in mind that generic 



 
 

 

35 

table validation functions can lead to data loss while the table names are used in 

queries where they are not expected. 

A thing as simple as sort order can be better if the user-supplied input is 

changed to a boolean, and then that boolean is used to select the secure value to add 

to the query. It is a very standard requirement in dynamic query generation. 

 

Example 

 

Figure 3.12 – Using Boolean Technique 

At any moment a user input can be altered to a non-String, such as a date, 

numeric, boolean, enumerated type, etc. before it is applied to a query, or used to set 

a value to be added to the query, then we can say that there’s a guarantee that it is 

secure enough to do so. 

 

 

 

 

 

 

 



 
 

 

36 

CONCLUSION 

In today’s modern era, SQL injection attacks are a growing criminal threat to 

the user’s web applications, especially those that access sensitive data. The attacker 

can modify, delete data, and perform database/server shutdown taking advantage of 

the vulnerabilities in the system. Defensive measures require much greater investment 

in deployment and support and should be used only on the most important or sensitive 

applications. However, as technology develops, so will the threats and techniques 

used by malicious users. As storage on the internet is more trend nowadays care 

should be taken to secure the data from being stolen by malicious users. With that in 

mind, we can say that one of the most important things we can do to protect our 

applications from SQL injection attacks is “Coding Defensively”. And what I mean 

by that statement is spending time educating your developers on basic security 

practices. The time you spend up-front will be far less than you would spend cleaning 

up the mess if the vulnerabilities make their way into production. Although It's long 

been argued that fixing bugs during development is far more effective than fixing 

them in later phases, the same holds here. Also in other to put up a good defense is to 

use prepared statements anywhere you're passing input from the user to the database 

through regular expressions, throwing out potentially dangerous input before sending 

it to any backend resource such as a database, or command line, or web service. Note 

that a user/developer should not make the hacker's job easy by spelling out SQL 

details in your error messages. 

 

  



 
 

 

37 

REFERENCES 

1. SQL (Structured query language) Injection -

https://www.imperva.com/learn/application-security/sql-injection-sqli/  

2. SQLite Injection Attacks - 

https://www.tutlane.com/tutorial/sqlite/sqlite-injection-attacks  

3. SQL Injection Prevention Cheat Sheet - 

https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_S

heet.html  

4. Testing for SQL Injection - https://owasp.org/www-project-web-

security-testing-guide/stable/4-Web_Application_Security_Testing/07-

Input_Validation_Testing/05-Testing_for_SQL_Injection 

5. SQL Injection Testing Tutorial -

https://www.softwaretestinghelp.com/sql-injection-how-to-test-application-for-sql-

injection-attacks/ 

6. How to Detect & Prevent SQL Injection Attack - 

https://datadome.co/bot-management-protection/how-to-prevent-bot-driven-sql-

injection-attacks/ 

7. What Is SQL Injection Attack and How Can We Detect It? -

https://zindagitech.com/what-is-sql-injection-attack-and-how-can-we-detect-it/ 

8. Dynamic Application Security Testing (DAST) -

https://www.techopedia.com/definition/30958/dynamic-application-security-

testing-dastI 

9. SQL Injection - https://www.w3schools.com/sql/sql_injection.asp 

10. PortSwigger - https://portswigger.net/web-security/sql-injection 

11.  Wiki - https://en.wikipedia.org/wiki/SQL_injection 

https://www.imperva.com/learn/application-security/sql-injection-sqli/
https://www.tutlane.com/tutorial/sqlite/sqlite-injection-attacks
https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.html
https://owasp.org/www-project-web-security-testing-guide/stable/4-Web_Application_Security_Testing/07-Input_Validation_Testing/05-Testing_for_SQL_Injection
https://owasp.org/www-project-web-security-testing-guide/stable/4-Web_Application_Security_Testing/07-Input_Validation_Testing/05-Testing_for_SQL_Injection
https://owasp.org/www-project-web-security-testing-guide/stable/4-Web_Application_Security_Testing/07-Input_Validation_Testing/05-Testing_for_SQL_Injection
https://www.softwaretestinghelp.com/sql-injection-how-to-test-application-for-sql-injection-attacks/
https://www.softwaretestinghelp.com/sql-injection-how-to-test-application-for-sql-injection-attacks/
https://datadome.co/bot-management-protection/how-to-prevent-bot-driven-sql-injection-attacks/
https://datadome.co/bot-management-protection/how-to-prevent-bot-driven-sql-injection-attacks/
https://zindagitech.com/what-is-sql-injection-attack-and-how-can-we-detect-it/
https://www.techopedia.com/definition/30958/dynamic-application-security-testing-dast
https://www.techopedia.com/definition/30958/dynamic-application-security-testing-dast
https://www.w3schools.com/sql/sql_injection.asp
https://portswigger.net/web-security/sql-injection
https://en.wikipedia.org/wiki/SQL_injection


 
 

 

38 

12. SQL Injection Cheat Sheet - https://www.invicti.com/blog/web-

security/sql-injection-cheat-sheet/ 

13.  SQL Injection - https://www.contrastsecurity.com/knowledge-

hub/glossary/sql-injection 

14. SQL Injection Attack - https://brightsec.com/blog/sql-injection-attack/ 

15. What is an SQL injection attack? - 

https://www.rapid7.com/fundamentals/sql-injection-attacks/ 

16. How to Protect Against SQLIa - 

https://security.berkeley.edu/education-awareness/how-protect-against-sql-

injection-attacks 

17. What is SQLIa - https://www.tek-tools.com/security/sql-injection-

attack 

18. Kaspersky - https://www.kaspersky.com/resource-

center/definitions/sql-injection 

19. Guru99 - https://www.guru99.com/learn-sql-injection-with-practical-

example.html 

20. Simplilearn - https://www.simplilearn.com/tutorials/cyber-security-

tutorial/what-is-sql-injection 

21. CrowdStrike - https://www.crowdstrike.com/cybersecurity-101/sql-

injection/ 

22. AVG - https://www.avg.com/en/signal/sql-injection 

  

  

 

 

 

https://www.invicti.com/blog/web-security/sql-injection-cheat-sheet/
https://www.invicti.com/blog/web-security/sql-injection-cheat-sheet/
https://www.contrastsecurity.com/knowledge-hub/glossary/sql-injection
https://www.contrastsecurity.com/knowledge-hub/glossary/sql-injection
https://brightsec.com/blog/sql-injection-attack/
https://www.rapid7.com/fundamentals/sql-injection-attacks/
https://security.berkeley.edu/education-awareness/how-protect-against-sql-injection-attacks
https://security.berkeley.edu/education-awareness/how-protect-against-sql-injection-attacks
https://www.tek-tools.com/security/sql-injection-attack
https://www.tek-tools.com/security/sql-injection-attack
https://www.kaspersky.com/resource-center/definitions/sql-injection
https://www.kaspersky.com/resource-center/definitions/sql-injection
https://www.guru99.com/learn-sql-injection-with-practical-example.html
https://www.guru99.com/learn-sql-injection-with-practical-example.html
https://www.simplilearn.com/tutorials/cyber-security-tutorial/what-is-sql-injection
https://www.simplilearn.com/tutorials/cyber-security-tutorial/what-is-sql-injection
https://www.crowdstrike.com/cybersecurity-101/sql-injection/
https://www.crowdstrike.com/cybersecurity-101/sql-injection/
https://www.avg.com/en/signal/sql-injection


 
 

 

39 

APPENDIX A 

Software Implementation 

Code for implementing software String searching in C 

 

 

 

 

#include <sys/time.h> 

#include <time.h> 

#include <stdio.h> 

#include <string.h> 

 

void search (char* pattern, char* text)  

{ 

int M = strlen(pattern); 

int N = strlen(text);  

 

for (int i = 0; i <= N - M; i++) { 

int j;  

for (j = 0; j < M; j++)  

if (text[i + j] != pattern[j]) 

break;  

if (j == M)// if pattern[0...M-1] = text[i, i+1, ...i+M-1]  

{ 

printf("Keyword *%s* found at index %d n\n\n",pat, i);  



 
 

 

40 

} 

}  

} 

int main()  

{  

struct timeval start,end; 

int i;  

//printf("input the username/password:"); 

//scanf("%s",&txt);  

char text[] = "O'Brian"; 

int pattern_length = 25;  

double sum=0; 

double temp=0;  

char pattern[25][10] = 

{"and","or","between","not","insert","set","delete","like","in","join","union","int

o","-- 

","create","drop","alter","add",";","all","'","any","exists","some","as","kill"};  

int count=1000;  

for(int j=0;j<count;) 

{ 

gettimeofday(&start,NULL); 

for(int i=0;i<pat_length;i++) 

{ 

Search(pat[i], txt); 

} 

gettimeofday(&end,NULL); 



 
 

 

41 

temp = (end.tv_sec*1000000 + end.tv_usec) - (start.tv_sec*1000000 

start.tv_usec); 

sum+=temp; 

if(temp!=0) 

{ j++; 

printf(“Iteration: %d, Time: %f\n”,j,temp); 

} 

} 

sum=sum/count; 

printf(“Average: %f”,sum); 

return 0; 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

42 

APPENDIX B 

Software Implementation 

To test for HTTP response using Intellij IDEA 

 

1. Package sumdu.tss.in85; 

 

2. import kong.unirest.Unirest; 

3. import org.junit.jupiter.api.AfterAll; 

4. import org.junit.jupiter.api.BeforeAll; 

5. import org.junit.jupiter.api.Test; 

6. import sumdu.tss.in85.helper.Keys; 

7. import sumdu.tss.in85.helper.utils.ResourceResolver; 

 

8. import java.io.File; 

9. import java.util.Arrays; 

 

10. import static org.junit.jupiter.api.Assertions.assertEquals; 

11. import static org.junit.jupiter.api.Assertions.assertTrue; 

12. /* 

- main idea: 

- for valid tables form database service should return code 

200 

- for valid tables text of page should contain table name 

- for un-existed pages service should return 404 code 

- for sqlite system tables service should return 404 code 

- Let's prepare database with tables which name we know 



 
 

 

43 

- for this test is enough code and body of http response, so 

we did not need Selenium 

13. */ 

14. public class ExampleFunctionTest { 

- private static Server app = null; 

 

- @BeforeAll 

- static void initServer() { 

i. //file from src/test/resources prepared for this test 

ii. File file = 

ResourceResolver.getResource("example-functional-

test.properties"); 

iii. Keys.loadParams(file); 

 

iv. app = new Server(); 

v. app.start(Integer.parseInt(Keys.get("APP.PORT"))); 

- } 

 

- @AfterAll 

- static void stopServer() { 

i. app.stop(); 

ii. app = null; 

- } 

 

- @Test 

- public void 

service_should_return_200_code_for_valid_tables() { 



 
 

 

44 

i. var listOfValidTableNames = 

Arrays.asList("first_table", "second_table"); 

ii. for (var validTableName : listOfValidTableNames) 

{ 

iii. var response = Unirest.get(app.getBaseUrl() + 

validTableName).asEmpty(); 

iv. assertEquals(200, response.getStatus()); 

- } 

15. } 

 

- @Test 

- public void 

service_should_contain_table_name_for_valid_tables() { 

i. var listOfValidTableNames = 

Arrays.asList("first_table", "second_table"); 

ii. for (var validTableName : listOfValidTableNames) 

{ 

iii. var response = Unirest.get(app.getBaseUrl() + 

validTableName).asString(); 

iv. assertTrue(response.getBody().contains(validTable

Name)); 

- } 

16. } 

 

- @Test 

- public void 

service_should_return_404_code_for_invalid_tables() { 



 
 

 

45 

i. var listOfUnlistedTableNames = 

Arrays.asList("unlisted_table", "other_ unlisted _table"); 

ii. for (var validTableName : 

listOfUnlistedTableNames) { 

iii. var response = Unirest.get(app.getBaseUrl() + 

validTableName).asEmpty(); 

iv. assertEquals(404, response.getStatus()); 

- } 

17. } 

 

- /** 

- this test fail because lack of protection inside the app 

- */ 

- @Test 

- public void 

service_should_return_404_code_for_system_tables() { 

i. var listOfSystemTableNames = 

Arrays.asList("sqlite_master", "sqlite_sequence"); 

ii. for (var validTableName : 

listOfSystemTableNames) { 

iii. var response = Unirest.get(app.getBaseUrl() + 

validTableName).asEmpty(); 

iv. assertEquals(404, response.getStatus()); 

- } 

- } 

18. } 



 
 

 

46 

 


	TABLE OF CONTENTS

