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Abstract: This article presents future trends in research using microbiological methods to intensify
bioprocesses for biogas production. The pretreatment by combinations of physical and chemical
methods, such as cavitation and electrolysis, is considered. The approach of the article involved
reviewing the residual area on the intensification technologies of anaerobic digestion with current
methods to improve the quality and quantity of biogas. The most valuable reported positive results of
the pretreatment of biological raw materials in the cavitation process were reviewed and are presented
here. A model of the effect of electrolysis on the species diversity of bacteria in anaerobic digestion
was developed, and changes in the dominance of the ecological and trophic systems were revealed
on the basis of previous studies. The stimulating effect on biogas yield, reduction in the stabilization
period of the reactor, and inactivation of microorganisms at lower temperatures is associated with
different pretreatment methods that intensify anaerobic digestion. More research is recommended to
focus on the electrolysis treatment of different types of waste and their ratios with optimization of
regime parameters, as well as in combination with other pretreatments to produce biomethane and
biohydrogen in larger quantities and in better qualities.

Keywords: bioprocesses; biogas production; cavitation; electrolysis; microbiological methods

1. Introduction

Determining ways to reduce the technogenic impact on the environment of organic
and mineral waste and their use as valuable secondary material resources is an important
issue today. General trends in waste minimization stimulate the transition from linear
to circular waste management systems. Therefore, the development of environmentally
sound biotechnologies for waste recycling and further utilization in the form of various
biocomposite products and the production of biofuels is considered promising. Further-
more, supporting the production of advanced forms of biofuels from residues and waste
(domestic resources) can potentially contribute to the economic recovery after COVID-
19, as projected by the European Commission [1] and substitute natural gas. Innovative
biotechnology and eco-engineering are certainly integrated into a systematic approach to
sustainable management of natural resources [2].

Bioprocesses are usually slower than standard chemical processes. Therefore, a promis-
ing area of research is the application of microbiological methods for bioprocess intensi-
fication, such as biofilm immobilization in mineral carriers and the formation of stable,
permanent conditions for bioprocesses, taking into account the load on the organic matter
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and the presence of toxicants. Therefore, a combination of physical–chemical methods,
such as cavitation, electrolysis, and electromagnetic treatment, is beneficial. Furthermore,
the combination of physico-chemical pretreatment methods such as cavitation, electrolysis,
and magnetic treatment increase the biodegradability of organics, as with the addition of
mineral additives/chemical by-products [3].

The intensity of the digestion process and, as a result, the formation of biogas are
affected by the following factors: temperature [4], humidity of the environment, pH level,
C:N:P ratio, the surface area of the raw material particles, the substrate feeding density [5],
inhibitory substances [6], and stimulating additives [7]. Optimization of certain factors
causes an increase in energy costs that makes the cost of biogas equal to the price of
natural gas, which may not be economically feasible and will not provide the required
effect. Therefore, the current task is to develop new methods and tools to intensify the
metagenesis process.

It is possible to stimulate biogas production using cavitation to degrade biomass.
Cavitation is the formation of cavities in a liquid filled with gas, steam, or their mixtures, in
which the cavitation bubbles burst and form shock waves, moving with the flow to a higher-
pressure area or during a half-period of compression. Under the influence of directed and
controlled cavitation in biological raw materials, complex fiber bonds of organic substances
at the molecular level are disintegrated. Due to this process, the dispersion of biological
raw materials increases significantly, and its particles shrink in size to 0.1–8 microns.
Therefore, it is easier for all bacterial species that participate in the biogas formation
process to decompose biogenic materials at all stages because their homogeneous structure
is destroyed and therefore the area covered with bacteria of biological raw materials
increases [8,9]. Biomass degradation of cellular and subcellular materials releases more
intensively natural enzymes that are biological catalysts for the biomass digestion process.
This also increases the amount of biogas produced. The high degree of grinding and
homogenization of the substrate, before entering the bioreactor, as a consequence, increases
the number of particles on the surface allows the production of biogas to increase and
intensify by 30–50% [10,11].

Anaerobic digestion is a type of indirect interspecies process with electron transfer
between a consortium of microorganisms [12]; therefore, the influence of electromagnetic
fields on the anaerobic digestion process has an effect and stimulates intergroup inter-
actions between bacteria and archaea. The application of electromagnetic fields for the
intensification of the biogas yield demonstrated that a magnetic field with induction of
0.38 Tesla has a significant effect on the fermentation process of methane [13]. The biogas
yield increased by 14% compared with the untreated substrate. More significant for the
anaerobic process is the electrokinetic decomposition, one of the high-voltage electrical
methods. The electric field deforms the cell walls, so their content is easily accessible to
bacteria [13]. Furthermore, treatment with high voltage electric pulses in a liquid medium
makes it possible to achieve inactivation of microorganisms at lower temperatures and
in a shorter exposure time than traditional thermal pasteurization methods, contributing
to better preservation of the products of thermolabile components. Therefore, the im-
pact of high voltage electrical pulses on liquid medium can be positioned as a promising
method to inactivate the microflora of liquid medium with minimal thermal destruction of
the products [14–16].

To control the physico-chemical parameters for intensification of the metagenesis
process, we consider cavitation, electrolysis, electromagnetic treatment, and their com-
binations as relevant methods for intensification increasing substrate degradation and
microbial activation.

Therefore, this article focused on the search for future trends in research using microbi-
ological methods to intensify bioprocesses in biogas production in the form of pretreatment
by combinations of physical and chemical methods, such as cavitation and electrolysis.

This article is structured into three sections, which cover the analysis of publications
on anaerobic digestion intensification technologies. The following section describes the
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methodological approach to analyzing publications on the intensification of anaerobic di-
gestion from the Scopus and Web of Science databases. The main part analyzes publication
activity by years and trends that have changed in the research of the selected magnetic and
electrolysis treatment and cavitation methods. A more detailed review of the influence of
cavitation processes on the enhancement of biogas yield is provided, as well as an overview
of the simulation result depending on the type of substrate, as well as the electrolysis
treatment to stimulate ecological and trophic groups of microorganisms in bioprocesses to
increase biogas production.

2. Methodological Approach for the Analytical Review of Intensification
Anaerobic Digestion

The methodological approach for the integration methods of intensification anaerobic
digestion involved:

• Reviewing the subject area of research on anaerobic digestion intensification technologies;
• Keywords search;
• Most current methods to improve the quality and quantity of biogas for their combi-

nation, which are most beneficial.

Two databases, Scopus and Web of Science, were used for the analytical review of
research studies, shown in Figure 1. These databases are considered the largest and most
important international scientific platforms for publications with specific features.
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Figure 1. Methodological approach for the analytical review from Scopus and Web of Sci-
ence databases.

These platforms provide an opportunity to publish personal scientific work and search
for and analyze existing material in a specific area, the comparison between Scopus and
Web of Science. The databases provide a quick and simple overview of the citations of
scholarly journal articles.

The Web of Science database selects only high-quality articles for publication and
provides a thorough peer review and professional expertise [17]. The publication must
correspond to the list of criteria [18]. The Scopus database is considered a more modern
database [19], which allows for a more prospective and predictable data search. Scopus
collects diverse works mainly uploaded to the resource digitally, including papers in
different languages.

The databases also provide an additional tool to simplify and speed up searches on
the resources. Advanced search and additional tools make data search more detailed and
used for statistical evaluation of the data. Additionally, another important feature is the
citation report, which presents the dynamics of the citation and publication activity, as well
as the citation by year, along with the creation of citation maps, allowing us to trace the
relationship between the studies.
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Analyzing the publication activity over the years is important to identify keywords
in the search that are specific to the chosen topics. In our case, we use words such as
“bioprocesses, anaerobic digestion, biogas, cavitation, electrolysis, and pretreatment” and
similar words in variations according to the desired query. All articles that met the query
were analyzed. A detailed analysis was carried out to find the reasons for the growth and
decline of publishing activity and the beginning of the discussion of the subject matter in
the articles.

3. Results and Discussion

Through scientific periodicals and the Web of Science and Scopus databases, we can
consider the interest in the use of various methods of intensification of bioprocesses, as
shown in Figure 2. According to the Scopus database, fluctuations in publication activity
by year are more visible.
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(a) Web of Science and (b) Scopus databases (2005–2021).

Since 1997, the use of cavitation in bioprocesses has been considered, and since 2017,
the topic has received more attention. In the published literature, the most common ap-
plications of cavitation processes are the ultrasonic and hydrocavitation technologies as
effective pretreatment methods to increase the biological decomposition of various sub-
strates. The impact of different effects and technical characteristics of constructions on
cavitation processes and the further intensification of the processes are also discussed.
In the investigation [20], the physical methods of cavitation of lignocellulosic biomass
before ultrasonic and hydrothermal treatment were compared. The solubilization effects of
biomass were achieved at approximately the same values (about 30% chemical oxygen de-
mand (COD)), but biomass pretreated with hydrothermal cavitation pretreatment achieved
a higher biogas production rate than ultrasonic pretreatment at the same consumption, but
the biogas production yield was higher with ultrasonic pretreatment. Cavitation offers an
effective way to make the lignocellulosic biomass more suitable for subsequent microbial
degradation. The study showed that the biogas yield of the pretreated biomass was high
in the anaerobic digestion process. This review article [21] summarizes the benefits of
ultrasonic sludge treatment, the effect of ultrasonic treatment parameters, and its effect on
increasing biogas production in an anaerobic digester.

According to database data, the initial interest in the subject of electrolysis in biopro-
cesses was in the years 2006–2007 [22,23], and later after 2013, this topic became increasingly
popular, with a growing trend. The study by Tartakovsky et al. [24] showed improved
methane production from wastewater in laboratory anaerobic reactors equipped with
electrodes for water electrolysis. Hydrogen obtained by electrolysis is converted to biogas,
improving its combustible properties, and converted to methane by hydrogenotrophic
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methanogens, improving the production of methane by 10–25% and stabilizing the reactor
at the required pH value without the addition of NaOH.

Liu et al. [25] found that the microbial electrolysis cell considered for the purpose
of extracting bioenergy and using waste sludge can provide higher energy efficiencies
and increase biogas production. Hassanein et al. [26] determined the effects of energy
production and waste treatment of dairy manure use in a combined anaerobic digestion
and microbial electrolysis cell system. The addition of an electrolysis cell increased overall
energy production and removed organic matter from the dairy manure. In Hua et al. [27]
microbial electrolysis cells were studied in a wide range of potential applications such as
the removal of recalcitrant pollutants, the synthesis of chemicals, the recovery of resources,
and biosensors.

The use of magnetic processing in bioprocesses developed slowly until 2014 and after
it began to increase in interest, while the peak values are 2019 and 2021. The effect of the
magnetic field on the qualitative composition of biogas is different. Debowski et al. [28]
showed the dependence of the methane yield time on the time of exposure to a constant
magnetic field. The increase in time leads to a decrease in the methane content in biogas.
An increase in methane content and yield is observed in the anaerobic digestion process of
animal waste [29] under the influence of a magnetic field with an induction of 10–50mT
and a decrease in productivity under conditions of more than 90 mT. The biological effect of
an external magnetic field must be associated with the effect of external fields on water that
is in a state different from the equilibrium metastable state, which is transmitted further to
the biological level through the participation of water in various metabolic reactions [30].

This topic is widely discussed in agricultural countries and countries with a large
amount of organic waste. Therefore, the study of bioprocess intensification methods can
help increase qualitative and quantitative indicators of biogas yield by using a combination
of intensification methods.

According to the analysis of scientometric databases, a significant number of publi-
cations [31–34] focus on improving the ecological situation in regions and in the energy
sector of the economy, the production of biofuels, and the chemical engineering with the
production of different useful chemical additives (e.g., magnesium salt [31]).

3.1. Cavitation Processes for Intensification of Biogas Yield

Cavitation can occur as a result of a decrease in liquid pressure as its velocity increases
or high-intensity sound waves pass through during a half-period. The industrial application
of cavitation is for the homogenization, mixing, and precipitation of suspended particles
in colloidal liquid compositions. Many industrial mixers are based on this established
principle. This is usually achieved by designing a turbine or by passing the mixture through
an annular orifice with a narrow inlet and a large outlet: a forced reduction in pressure
leads to cavitation as the liquid runs towards the larger volume side. This method can
be controlled by hydraulic devices that control the size of the inlet orifice; therefore, the
process can be controlled in different mediums [35,36].

Ultrasound is elastic vibrations and waves with frequencies from 15,000 to 20,000
Hz (15 to 20 kHz) and up to 1,000,000,000 Hz (1 GHz), the frequency range of ultrasound
between a 1109 and 11,012 Hz is commonly called hypersonic. The ultrasound frequency
range can be divided into three subareas: ultrasound at low frequencies (15,000–100,000
Hz)-LFU, ultrasound at medium frequencies (100,000–10,000,000 Hz)-MFU, and ultrasound
at high frequencies (10,000,000–1,000,000,000 Hz)-HFU [33]. Thus, the different frequency
ranges of ultrasound were shown with the possibility of extending its application to
substrate preparation in biogas technology.

As a result of the application of the controlled cavitation process in biomass destructors,
they are widely used in biogas production, as shown in Table 1. The percentage of methane
in biogas increases to 70–75% [9]. Nykyforov et al. [37] studied anaerobic digestion of
blue-green algae that causes blooms in water bodies, it was experimentally established that
mechanical cavitation pre-treatment of blue-green algae biomass increases the biogas yield
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by 21.5%. Furthermore, the biogas produced contains up to 72% methane and hydrogen.
Hydrogen is also an important component of biogas, and in the context of the development
of hydrogen energy [38] as the most environmentally friendly field, its production and
production biologically are relevant.

In Polettini et al. [39], the effect of ultrasonic treatment on methane production was
evaluated in anaerobic digestion of lignocellulosic waste. It was determined that with a
mixture ratio of sonicated and untreated substrate 75/25, methane production improved by
20% and kinetic parameters increased by 64–82%. As can be seen, there is a trend towards
an increase in biogas methane production, which has a certain range with a maximum
value of 82%, which can be achieved in the study [39], which is consistent with several
other studies [8,9].

Joshi et al. [40] showed that the use of ultrasound promotes the solubilization of
organic matter present in food waste, and the continued application of ultrasound in the
anaerobic digestion process resulted in increased biogas production (almost doubled) of
pretreated food waste [41]. The pretreatment of different types of waste is important, as
food waste has a significant inclusion of cellulose-containing components, so its treatment
with ultrasound can have a positive effect in terms of improving the biodegradability of
these compounds and homogenization.

As a result of the high dispersibility and intensification of the anaerobic fermenta-
tion processes, the fermentation period of biomass is considerably reduced. The use of
ultrasound in secondary sludge at the Molina de Segura wastewater treatment plant [42]
significantly reduces the minimum time required for the anaerobic digestion process. By
hydrolysis of the existing cell walls in secondary sludge, biodegradable substances increase
immediately, accelerating the anaerobic digestion processes and moving to the stages of
acidogenesis, acetogenesis, and methanogenesis. The use of an ultrasonic sludge treat-
ment system increased digester capacity by 8%, causing an 18% increase in average biogas
production and a 10% decrease in the production of dewatered sludge on average. The
cogeneration process at the Molina de Segura wastewater treatment plant reduced the
required electricity consumption since cogeneration increased by 20%.
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Table 1. Process characteristics with the additional pretreatment.

Substrate Increased Production Pretreatment
Conditions Limiting Factors Benefits Reference

Wastewater
treatment plant

Sewage sludge
Increase the methane
yield coefficient up to

95%

USPP: power 150 W;
exposure time 15, 30,

45, and 60 min
• Economically feasible at the specific energy input

• Increase in the methane yield coefficient balance the energy
requirements;

• Higher biodegradability and enhanced hydrolysis phase
would entail smaller reactor sizes along with a reduction in
high capital requirements;

• Methane yield coefficient 172 mL/g VS

[43]

Sewage sludge
Increase the methane
content in biogas to

68.3 ± 2.5%

USPP: power 125 W;
field intensity

1.9–4.3 W cm−2

• The volume and composition of biogas directly
dependent on the ultrasound power

• The efficiency of the unit depends on the acoustic and
electronic construction set [44]

High organic
content wastewater

Increase the methane
yield up to 60%

USPP: power 400 W;
frequency 24 kHz

with different
amplitude ratios;

exposure time 1, 2, 3 h

• Higher COD and BOD removals were in combination
with ultrasonic with alkaline pre-treatment

• Ultrasonic pre-treatment with the following alkaline
pre-treatment: CH4 yield of 211 mL/g VS. within the first
two days

[45]

Waste-activated
sludge

Increases biogas
production by 25%

USPP: power 225 W,
frequency 20 kHz

• Ultrasound led to increased sludge biodegradability,
but they were not fully biodegradable

• Biogas volume higher with supplied energies of 7000 and
15,000 kJ/kg TS;

• Biogas production limit at 7000 kJ/kg TS
[46]

Food waste

Fruit and vegetable
wastes

Increase the methane
production by

29–80%

USPP:
frequency 20 kHz; the
amplitude of 80 µm;
exposure time 9 min,

18 min, 27 min

• Longer ultrasonic time not only upsurges the energy
input of the digester, but also decreases the net
energy yield;

• Longer treatment time may reduce the microbial
activity

• Power of the ultrasound has a stronger influence than the
treatment time;

• The energy output of the bioprocess compared with the
energy input of ultrasonic treatment is two times higher;

• Shorter batch time means more economic profitability

[47]

Food waste and
cardboard

Increase the biogas
yield up to 26%

USPP: power 750 kW;
frequency of 20 kHz;

exposure time 30 min,
45 min, 60 min

• Inverse relationship exists between the specific
energy required and the TS concentration of the
substrate;

• Proportional relationship exists between the energy
required and the time of ultrasound pre-treatment

• Indicates that ultrasound pre-treatment would be beneficial
for large quantities of substrate pre-treatment [41]

Organic fraction
of municipal
solid waste

Increase the biogas
production up to 24%

USPP: density
0.1–0.4 W/mL,

exposure time 30 min,
69 min

• Operating conditions and potential costs and benefits

• Mass and energy balance on full-scale studies showed that
1 kW of ultrasonic energy used to pretreat sludge generates
about 7 kW of electrical power after losses;

• Higher capital and operating cost savings can be reached by
reducing digesters’ size

[48]

Increase the biogas
production up to 16%

USPP: frequency
20 kHz

• Dependable scale for mass and energy balances is
needed to evaluate the process upgrade’s technical
and economic feasibility

• Application of specific energy values higher than
15,000 kJ/kgTS does not provide significant solubilization
effects

[49]

Maximum biogas
yield produced after

72 h of digestion
increase

USPP: frequency
20 kHz;

density 0.2, 0.4,
0.6 W/mL; exposure
time 10 min, 20 min,

and 30 min.

• Ultrasonic power densities and exposure times had
little influence on samples with 10% total solid
content. The time required for the hydrolysis phase
decreased

• High amount of energy input during sonication
pretreatment caused significant TVFA generation, effective
for low TS content

[50]



Fermentation 2022, 8, 570 8 of 15

Table 1. Cont.

Substrate Increased Production Pretreatment
Conditions Limiting Factors Benefits Reference

Agricultural waste

Maize silage
Increase in biogas and

methane production up
to 29.5%

USPP: field intensity
40–50 W·cm−2;

frequency 20 kHz;
production ceases after

300 h

• Consuming energy for disintegration

• Suppose the production of electricity with increased
CH4 on 30% leads to electric energy balance value of
approximately 467 kJ/kgVS, might be expected that the
electricity production of the biogas plant would rise by
about 20.7%

[51]

Cattle manure
mixed with straw

wheat (2:1)

Increase in methane
production by 1.6–4.1%
Increase in biogas yield

production by
8.7–64.2%

USPP: power 400 W;
frequency 24 kHz;

treatment time
4.41–54.14 s

• With specific energy input, hydrothermal cavitation
pretreatment and ultrasonic pretreatment provided
release of CODsol and increased solubilization;

• Crucial aspects of the economics of the conversion of
lignocellulosic biomass for commercialization is the
energy requirement;

• Industrial-scale application

• Highest provided energy inputs were 4034 kJ/kg TS;
• Hydrothermal cavitation equipment is easier to scale

up for industrial-scale applications and consumes less
energy than ultrasonic

[20]

Increase in methane
production by 2.0–5.4%
Increase in biogas yield

production by
5.7–39.4%

HCPP: hydrosonic
pump 1.2 kW; treatment

time 4.41–54.14 s

Silage with bovine
liquid manure

Increase in biogas yield
by 23.5%

USPP: power 400 W;
frequency 24 kHz;

treatment time 60 s,
120 s, 180 s

• Volumes of biogas produced at the sonification times
of 120 s and 180 s did not change significantly

• Production of biogas was not significantly increased by
extending the ultrasonic field’s activity time [52]

Mixture of organic
wastes

Increase in methane
production by 20%

USPP: intensity 2.3, 7.7,
13.4 W·cm−2

• Treatment conditions have a high energy
consumption, creating a challenge to full-scale
implementation

• Efforts should be made to reduce the US energy applied
in order to improve the energetic profile of the
combined process corresponding to overall
environmental sustainability

[39]

Algae residues Increases the methane
yield by 21.5%

HCPP: 4000 rpm for
15 min • Actual effectiveness of methanogenesis • Biogas produced calorific value Q = 5100–5200 kJ/m3

are close to the propane-butane mixture [37]

USPP, ultrasound pretreatment parameters; HCPP, hydrothermal cavitation pretreatment parameters; COD, chemical oxygen demand; BOD, biochemical oxygen demand; TS, total
solids; VS, volatile solids.
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The biological processes are substantially stabilized, leading to the absence of foaming
and floating crusts in the upper part of the bioreactor. Thus, the entire productive volume of
the reactor is used efficiently. Machnicka et al. [53] showed how the addition of cavitation-
disintegrated foam to mesophilic anaerobic digestion can improve the process and the
production of biogas. The thermophilic digestion mode is more efficient in terms of biogas
yield per unit time, but its use can be limited because of economic indicators of the cost of
heating the substrate in the bioreactor, and it depends on external temperatures and thus
on the climatic zone. Therefore, in temperate latitudes, including Ukraine, it is relevant to
work in the mesophilic mode.

3.2. Electrolysis Treatment in Processes of Stimulation of the Ecological and Trophic Groups of
Microorganisms Required in Biogas Production

The microbial electrolysis cell provides a higher energy efficiency and biogas pro-
duction, which have been studied and confirmed by several studies. A systematic un-
derstanding of microbial interactions and the production of biomethane and hydrogen
in the microbial electrolysis cell is limited [54]. Liu et al. [25] showed that biohythane
can be produced directly in microbial electrolysis cells by biocathodes using sludge. The
predominant population at the alkali-pretreated sludge-fed microbial electrolysis cell anode
was represented by exoelectrogenic Geobacter, while fermentative Clostridium dominated
at the biocathode. Most of the methanogenic archaea in the cathodes belonged to the
hydrogenotrophic Methanobacterium and Methanocorpusculum. The microbial electrolysis
cell enhances the production of biomethane and hydrogen from waste sludge through
syntrophic interactions between fermentative bacteria, exoelectrogenes, and methanogenic
archaea. Furthermore, multiple gas production pathways are observed in the micro-
bial electrolysis cell reactor: fermentation and electrolytic H2 production, as well as hy-
drogenotrophic methanogenesis and electromethanogenesis. The possibility of additional
electrolytic hydrogen production in the electrolysis system also provides perspective on
the application in innovative bioprocesses such as photo-fermentation [55] and dark fer-
mentation [56]. Higher efficiency biohydrogen production by two-stage dark fermentation
combined with microbial electrolysis was proven on palm oil mill effluent [57] and cassava
starch processing wastewater [58]. Furthermore, the integration of microbial electroly-
sis cells with photo-fermentation positively changed the microbial community with the
predominance of electrogenic microorganisms, which increased hydrogen production [59].

In electromethanogenic bioelectrochemical systems, there are three known pathways:
CO2 reduction, methylotrophic, and acetoclastic pathways. The CO2 reduction pathway,
which stimulates methane production, is considered the main determinant of overall
system performance, but other pathways are also important [60]. Therefore, acetoclastic
methanogenesis very often prevails in industrial condition [61] biogas production because
it is based on the possibility of bioconversion of acetates with the obtaining of methane
(CH3COOH→ CH4 + CO2).

Some methane production reactions carried out by biocathode communities have
been described in the literature, but further research is needed to elucidate the molecular
pathways. In a review by Blasco-Gómez et al. [62], some molecular research findings are
collected in the field of electromethanogenesis (Table 2).

Therefore, each of these pathways can be used to produce methane, and it is important
to find an integrated opportunity to stimulate their dominant relationships in a consortium
of methanogens to improve the quality of biogas.
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Table 2. Production of the components required in biocathode processes [62].

Element to Catalyze
Processes Type of Reaction Description Bacterial Groups

Electrons from electrodes HCO3
− + H2 + H+ → CH4 + 3H2O

• Can catalyze the production of
hydrogen and methane through
electrons

• Reduction in CO2 into CH4

Hydrogenotrophic
methanogens (i.e.,

Methanobacterium or
Methanobrevibacter)

Electron or hydrogen
transfer 2H+ + 2e−

(electricity)→ H2

• Functional correlation between
species ensures

• Involvement in energy transduction
(direct electron or hydrogen transfer)
between the electrode surface and
the methanogenic populations

Between Desulfovibrionaceae
family and the phylum

Euryarcheota

Reduction in oxygen CH4 + 2O2 → CO2 + 2H2O

• Species of bacteria can enhance
methane production by consuming
oxygen, a factor that is toxic to
methanogenic archaea

Hydrogenophaga caeni,
Methylocystis sp. and

Acidovorax caeni

Reduced compounds
(hydrogen or formate) as

available substrate for other

HCO3
− + H2 + H+ → CH4 + 3H2O

HCOO− + 3H2 + H+ → CH4 + 2H2O

• Use cathodic electrons to produce
reduced compounds faster than their
metabolic capacity to use them

Methanothermobacter,
Methanomicrobiales,

Methanococcales,
Methanocellales

According to Cerrillo et al. [63], the combination of anaerobic digestion and a microbial
electrolysis cell with a methanogenic biocathode also proved to be a promising waste treat-
ment strategy for pig manure. Microbiological analysis showed that the methylotrophic
family of Methanossiliicoccaceae (genus Methanomassiliicoccus) was the most abundant among
active archaea in anaerobic digestion during the inhibited state. The Methanobacteriaceae
family (genera Methanobrevibacter and Methanobacterium), generally considered the most
abundant in methanogenic biocathodes, shared dominance with the Methanomassiliicoc-
caceae families (genus Methanomassiliicoccus) and Methanotrichaceae (genus Methanothrix) in
the cathode.

The results of the Liu et al. study [64] showed that stimulation of direct electron transfer
in the microbial electrolysis cell improves the processing of biogas. The methane content of
biogas increased from 71% to >90% and 8.2% CO2 converted to methane, due to the fact that
the acetoclastic methanogen Methanothrix in the cathode used the CO2 reduction pathway,
while in the bulk sludge it used the acetate decarboxylation pathway to produce methane.
Therefore, methane production was stimulated by hydrogen generation, which was used
by autotrophic methanogens as electron donors through the CO2 reduction pathway.

One of the most recent studies by Park et al. [65] focused on microbial communities and
the performance of a conventional anaerobic reactor combined with microbial electrolysis
cells. According to the study bioelectrochemical reactions can reduce the stabilization
period of the reactor and increase the amount of methane produced. Furthermore, an
increase in the yield of methane was assumed because e and H+ produced during this
process were converted to H2 by electrochemical reactions and then combined with CO2
to produce CH4. Therefore, H2 and CO2 react with the formation of additional methane.
However, the hydrogen content of the system with ‘activated water’ (AW) was higher than
that of the experiment without electrolysis treatment during the start-up period. On the
contrary, the gas compositions in the two reactors were the same during the stationary
period. On this basis, it was assumed that the increase in methane yield and production
was associated with changes in microbial communities under bioelectrochemical reactions,
as shown in Figure 3.
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Figure 3. Bioelectrochemical reactions in the system with ‘activated water’ and the experiment
without electrolysis treatment during the initial period.

There are definite differences between the microorganisms of the archaea communi-
ties in the basic solution, the dominant species in the unclassified solution with AW was
Methanobacterium beijingense (63% of the total population), followed by Methanosaeta concilii
(20% of the total population). In the unclassified solution without electrolysis treatment,
Methanoculleus bourgensis was the dominant species (69% of the total population and un-
classified microorganisms, 25%). The Methanoculleus bourgensis and Thermoplasmata classes,
which dominated without electrolysis treatment, inhabit the anode surface of bioelectro-
chemical systems. Methanobacterium beijingense, which represents most of the microbial
community with AW, is a hydrogenotrophic methanogen that generates methane from H2,
CO2, and formate and does not use substrates from methanol, ethanol, trimethylamine,
isobutanol, or isopropanol. Methanosaeta concilii, which is the next largest fraction, is an ace-
toclastic methanogen that generates methane from acetic acid. Methane formation stops if
methanol, trimethylamine, formic acid, propionic acid, butyric acid, and pyruvic acid come
into contact with this microorganism. The main microorganisms with Methanobacterium
beijingense and Methanosaeta concilii of AW use their respective substrates (acetic acid and
formate) to produce methane, and the presence of other compounds negatively affects the
formation of methane.

Methanoculleus bourgensis was the dominant species in the reactor without electrolysis
treatment. The introduction of additional electron acceptors in the form of hydrogen, as
well as the disintegration of complex organic compounds under the influence of redox
reactions during electrolysis, was the main contributor to this, which is consistent with [65].
This species uses CO2, H2, formate, 2-propanol, 2-butanol, and other secondary alcohols to
generate methane with simultaneous acetoclastic and hydrogenotrophic methanogenesis,
with a Gibbs free energy for the production of CO2 methanol lower than for reactions
of acetoclastic and hydrogenotrophic methanogenesis. The non-electrolysis approach
bioelectrochemically accelerates the methanol pathway and the production rate, and then
the methanol produced in the cathode is converted directly to methane by advanced
methylotrophic methanogens (Figure 4).

To summarize the changes in the archaea community in bioreactors with and without
electrolysis, microbial communities that generate methane from certain substrates (for-
mate and acetate) were found with AW, while Methanoculleus bourgensis, which generates
methane using different substrates (formate, 2-propanol, 2-butanol, etc.), was found with
AW, the Thermoplasmata community, which is a methylotrophic methanogen that gener-
ates more methane than other methanogens (such as acetoclastic or hydrogenotrophic
methanogens), dominated without electrolysis treatment. Combined with the results on
species diversity, the diversity and population of archea communities were lower without
electrolysis treatment than with AW. This change in the microbial community resulted in a
difference in methane production. Furthermore, when analyzing the microbial community
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without electrolysis treatment using food waste filtrate, the population of Methanosarcina
thermophila, which grows with acetate, methanol, methylated amines, etc., and is part
of the Methanosarcinaceae family, increased significantly. These results demonstrate that
this medium promotes the growth of methylotrophic methanogens in the reactor without
electrolysis treatment [65].
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Overall, certain aspects ensure higher biogas production with electrolysis treatment
for the stimulation bioprocess:

• The microbial electrolysis cell can increase the methane content;
• Electrokinetic decomposition deforms the cell walls of substrates, making their con-

tents easily accessible to bacteria for anaerobic digestion [13];
• Treatment of liquid media with high-voltage electric pulses leads to inactivation of

microorganisms at lower temperatures and in a shorter soaking time [15];
• The same increase in the yield and production of methane is associated with changes

in the microbial community resulting in a difference in methane production [50].

4. Conclusions

Prospective implementation methods, such as cavitation and electrolysis were consid-
ered to stimulate biofuel production processes. The cavitation method has a stimulating
effect on the biogas yield and percentage of methane due to better biomass destruction
and homogenization, release of natural enzymes and reduction in the digestion period.
Bioelectrochemical reactions can shorten the stabilization period of the reactor and increase
the amount of released methane due to the deformation of cell walls of substrate, inacti-
vation of microorganisms, and changes in the microbial community under the influence
of electrolysis treatment. It should be noted that it is important to find the best option for
the use of intensification methods with a feasibility study of the effectiveness of use on an
industrial scale.
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