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Abstract: This study aimed to evaluate the effects of dietary supplementation of compound polysac-
charides derived from Astragalus and Glycyrrhiza on growth performance, meat quality, antioxidant
function, cecal microbiota and serum metabolomics of broilers. A total of 480 one-day-old male
Arbor Acres (AA) broilers were randomly divided into four treatments with six replicates comprising
20 broilers each. Treatments: CON group was the basal diet; ANT group was supplemented with
Terramycin calcium; LAG group was supplemented with 150 mg/kg Astragalus polysaccharides
and 75 mg/kg Glycyrrhiza polysaccharides; HAG group was supplemented with 300 mg/kg Astra-
galus polysaccharides and 150 mg/kg Glycyrrhiza polysaccharides. The results showed that LAG
and HAG supplementation increased growth performance, antioxidant function and meat quality
compared with the CON group and ANT group and, especially, the effect of LAG treatment was
better than HAG. Analysis of cecal microbiota showed that LAG and HAG supplementation altered
cecal microbial diversity and composition in broilers. Serum metabolomics analysis showed that a
total of 193 differential metabolites were identified in CON and LAG groups, which were mainly
enriched in linoleic acid metabolism and glutathione metabolism pathways. Moreover, there was a
close correlation between serum metabolites, cecal microbiota and phenotypic indicators. Conclu-
sion: Dietary supplementation of 150 mg/kg Astragalus polysaccharides and 75 mg/kg Glycyrrhiza
polysaccharides could improve the growth performance, antioxidant function and meat quality of
broilers by changing the serum metabolites and cecal microbiota composition.

Keywords: Astragalus; Glycyrrhiza; polysaccharides; broiler; meat quality; antioxidant function;
cecal microbiota; metabolomics

1. Introduction

The unreasonable use of antibiotics can easily lead to bacterial resistance, resulting
in drug residues in meat, eggs and milk, causing food safety problems [1,2] and harming
human health and environmental safety [3]. Considering food safety and human health,
some countries, such as those of the European Union, the United States, China and India,
have promulgated regulations prohibiting or restricting antibiotic growth promoters [4].
Thus, it is urgent to develop green feed additives to replace antibiotics. As feed additives,
plant polysaccharides have safety characteristics, no resistance and minor toxic and side
effects. Rational addition to the feed can improve the production performance, intestinal
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microecology, antioxidant function and livestock and poultry product quality [5,6]. Previ-
ous studies have shown that polysaccharides extracted from external pistachio hull could
partly prevent enzymatic browning in potato slices [7], inhibit lipid peroxidation, have
cytoprotective properties [8], thereby reducing lipid oxidation during refrigeration. and
improve meat color stability [9]. Interestingly, supplementing green tea polysaccharides
in broilers can also improve pH and a* value of chicken breast muscle, decrease the L*
value and b* value, increase the abundance of Bacteroides and Lactobacillus and decrease
the abundance of Proteobacteria [10]. Moreover, it has been reported that adding ginseng
polysaccharides to the diet could display antioxidant, immunomodulatory properties and
anti-tumor functions [11].

The primary component of the water-soluble heteropolysaccharide derived from the
dried roots or stems of the traditional Chinese medicine herb Astragalus is Astragalus
polysaccharides (APS), which has immunomodulatory, anti-inflammatory, antioxidant,
antibacterial and antiviral properties [12]. Dietary supplementation with APS has been
shown to boost juvenile broiler body weight gain, perhaps because of increased diges-
tive enzyme activity and antioxidant ability [13]. Moreover, dietary supplementation of
gamma-irradiated Astragalus polysaccharides in poultry diets can increase ADFI, reduce
FCR [14] and alleviate growth decrease under cyclophosphamide and lipopolysaccharide
stress in broilers [15,16]. In mice, APS effectively alleviated high-fat diet-induced metabolic
disorders, altering gut microbiota composition and function [17]. Glycyrrhiza polysaccha-
rides (GPS) are one of the primary active components of Glycyrrhiza and have antioxidant,
antibacterial, antiviral, anticancer, anti-inflammatory, immunomodulatory, hypoglycemic,
reconciling medicine and other biological activities [18]. Adding 1500 mg/kg Glycyrrhiza
polysaccharide could increase the activity of serum T-SOD in broilers and inhibit the
decrease of T-SOD activity and the increase of MDA content induced by lipopolysaccha-
ride [19]. GPS has the potential to improve broiler growth performance by improving
intestinal health and modulating gut microbiota [20]. The compatibility of Astragalus
and Glycyrrhiza can promote the synergistic effect and improve efficacy [21]. However,
there are few reports on broilers’ compatible use of Astragalus polysaccharides and Gly-
cyrrhiza polysaccharides. The present study was carried out to investigate the effects
of dietary supplementation of Astragalus-Glycyrrhiza polysaccharides on the production
performance, nutrient apparent metabolic rate, meat quality and antioxidant function of
broilers. Moreover, serum non-targeted metabolomics and gut microbiota were analyzed to
provide insight into the beneficial effects of dietary Astragalus-Glycyrrhiza polysaccharides
in broilers. The findings in this study will promote the application of Astragalus-Glycyrrhiza
polysaccharides as antibiotic alternatives in poultry production.

2. Materials and Methods
2.1. Astragalus Polysaccharides and Glycyrrhiza Polysaccharides

Inner Mongolia Evergrand Pharmaceutical Co., Ltd. (Inner Mongolia, Tongliao,
China) provided APS and GPS. The content of polysaccharides in APS and GPS is 70.23%
and 61.36%, respectively.

2.2. Experimental Design and Animal Management

A total of 480 one-day-old male Arbor Acres (AA) broilers were randomly divided
into four treatments with six replicates comprising 20 broilers each. Treatments: CON
group was the basal diet; ANT group was supplemented with Terramycin calcium; LAG
group was supplemented with 150 mg/kg Astragalus polysaccharides and 75 mg/kg
Glycyrrhiza polysaccharides; HAG group was supplemented with 300 mg/kg Astragalus
polysaccharides and 150 mg/kg Glycyrrhiza polysaccharides. The corn-soybean meal diet
was fed to broilers in the experiment and the formula was divided into two stages, i.e.,
d1–d21 and d22–d42. The ingredients and nutrient levels of basal diets were formulated to
meet the NRC (1994) nutrient requirements of broiler chickens (Supplementary Table S1).
The broilers were vaccinated with the Newcastle disease vaccine and the infectious bursal
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vaccine on days 7 and 14 of the experiment. All broilers had free access to feed and clean
water during the experiment. The temperature of the chicken coop was maintained at 33 ◦C at
the age of 1 to 4 d and then reduced by 2 ◦C per week to a final temperature of around 24 ◦C.

2.3. Growth Performance

On the 21st and 42nd days of the experiment, broilers fasted with free drinking water
at 8:00 p.m. Broilers were weighed in duplicate units at 8:00 a.m. on the 22nd and 43rd
days and the body weight and feed consumption of the broilers were accurately recorded.
The average daily gain (ADG), average daily feed intake (ADFI) and feed conversion ratio
(FCR) were calculated.

2.4. Serum and Breast Muscle Antioxidant Function

Each duplicate randomly selected one male broiler at 42 d. Blood samples were drawn
from the wing vein and immediately transferred to coagulation tubes. After centrifugation
(3000× g at 4 ◦C for 15 min), serum samples were collected and kept at −20 ◦C for analysis.
The ipsilateral breast muscle was harvested after the broilers were euthanized. The activities
of T-AOC, SOD, GSH-Px and MDA content in serum and breast muscles were determined
using kits from Nanjing Jiancheng Bioengineering Institute (Nanjing, China).

2.5. Meat Quality

Ipsilateral breast muscle samples were collected and the following meat quality indi-
cators were measured.

pH: pH was measured using the Testo 205 pH meter (Testo AG, Lenzkirch, Germany),
which was inserted directly into the breast muscle within 45 min and 24 h after the euthana-
sia of broilers. pH meters were calibrated with standard buffers of pH 4.01 and pH 6.86
before use.

Color: About 45 min after the euthanasia of broilers, a colorimeter (CH-400, Konica
Minolta Holdings, Inc., Tokyo, Japan) was used and three pieces of breast muscle sam-
ples (5 cm × 5 cm × 0.5 cm) were cut vertically. The samples’ L*, a* and b* values were
measured thrice and the average value was taken as the final color value.

Drip loss: About 2 g of breast muscle (W1) from each broiler was weighed and placed
in a sealed plastic bag. The plastic bag was inflated to prevent muscle mass from sticking
to the wall and hung in a 4 ◦C refrigerator for 24 h. The filter paper was used to wipe off
the water on the muscle surface. The resulting breast muscle (W2) was weighed. Drip loss
was calculated using the equation:

Drip loss = (W1 −W2)/W1 × 100% (1)

Shearing force: The breast muscle sample was packed in a plastic bag and placed in a
constant-temperature water bath at 80 ◦C for heating. When the central meat temperature
reached 70 ◦C, the meat was collected and cooled to room temperature. Then, the meat was
trimmed into strips with length, width and height of 3, 1 and 1 cm, respectively, along the
direction of muscle fibers and cut perpendicular to the direction of muscle fibers by using a
digital meat tenderizer (model C-LM3B, Northeast Agricultural University).

Fatty acid: The fatty acid content of breast muscle was quantitatively determined
by the gas chromatographic method (GB/5009.168-2016) [22]. Results of fatty acids were
expressed as the percentage of the total fatty acids identified.

2.6. qRT-PCR of Intestinal Antioxidant Enzyme Genes

The expression levels of SOD1, SOD2 and GSH-Px mRNA in the intestinal mucosa
of broilers (duodenum, jejunum and ileum) were detected by qRT-PCR. The extraction of
total RNA from the samples was performed according to the instructions of the Trizol kit.
The concentration of total RNA (OD260/280 = 1.8–2.0) was determined using a microspec-
trophotometer. The extracted RNA was transcribed into cDNA using the Takara reverse
transcription kit. Fluorescence quantitative PCR detection was performed using the Takara
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fluorescence quantitative kit and the reaction volume was 20 µL. Primers were synthesized
by Shanghai Sangon Biological Co., Ltd. (Shanghai, China). The specific information on
primers is shown in Supplementary Table S2. GAPDH gene was used as an internal reference
and the relative expression of the target gene was calculated using the 2−∆∆CT method.

2.7. Cecal Microbiota

Using the QIAamp DNA Stool Mini Kit (QIAGEN, CA, Hamburg, Germany) by the
manufacturer’s instructions, microbial DNA was extracted from the contents of the cecum.
With primer pairs 338F (5′-ACTCCTACGGGAGGCACAG-3′) and 806R
(5′-GGACTACHVGGGTWTCTAAT-3′), the V3-V4 region of the 16S rRNA gene was am-
plified. By Majorbio Bio-Pharm Technology Co., Ltd. (Shanghai, China), the 16S rRNA
genes were sequenced using the Illumina MiSeq platform (Shanghai, China). The prac-
tical readings were obtained by demultiplexing the raw reads, quality-filtering them
using Trimmomatic, then merging them using FLASH. Using UPARSE (version 7.11,
http://www.drive5.com/uparse/ accessed on 10 July 2021), the acquired high-quality
reads were assigned to operational taxonomic units (OTUs) with a 97% similarity and
chimera sequences were eliminated by comparison with the Silva database using the
UCHIME algorithm. The RDP Classifier examined the taxonomy of the representative
sequences for each OTU. The bacterial communities’ diversity, composition and differences
were examined on the I-Sanger Cloud Platform, which was made available by the Majorbio
Bio-Pharm Technology Co., Ltd. (Shanghai, China).

2.8. Metabolite Extraction and Analysis

The 400 µL methanol: water (4:1, v/v) solution was used to extract the metabolites
from 100 µL of accurately weighed serum samples. The mixture was treated with a High
throughput Tissue Crusher Wonbio-96c (Shanghai Wan Bo Biotechnology Co., Ltd., Shanghai,
China) at 50 Hz for 6 min after being allowed to settle at−20 ◦C. It was followed by vortexing
for 30 s and ultrasonic treatment at 40 kHz for 30 min at 5 ◦C. The samples were placed at
−20 ◦C for 30 min to precipitate proteins. After centrifugation at 13,000× g at 4 ◦C for 15 min,
the supernatant was carefully transferred to sample vials for LC-MS/MS analysis.

The mass spectrometric data were collected using a Thermo UHPLC-Q Exactive Mass
Spectrometer equipped with an electrospray ionization (ESI) source operating in either posi-
tive or negative ion mode. Peak detection and alignment of raw data were performed in Pro-
genesis QI 2.3 (Nonlinear Dynamics, Waters, Milfod, MA, USA). The final dataset was im-
ported into the SIMCA16.0.2 software package (Sartorius Stedim Data Analytics AB, Umea,
Sweden) for multivariate analysis. Orthogonal Partial Least Squares Discriminate Analysis
(OPLS-DA) were performed using ropes (Version 1.6.2, http://bioconductor.org/packages/
release/bioc/html/ropls.html, accessed on 25 July 2021) R package on Majorbio Cloud
Platform (https://cloud.majorbio.com, accessed on 25 July 2021). Variable importance in
the projection (VIP) was calculated in the OPLS-DA model. Differential metabolites were
identified according to the standard of VIP > 1 and p < 0.05. Kyoto Encyclopedia of Genes
and Genomes (KEGG) database (http://www.genome.jp/kegg/, accessed on 25 July 2021)
was used for pathway enrichment analysis. The correlational heatmaps were generated
according to the result of the Pearson correlation analysis. The process was conducted in the
environment of a Python package named Scipy Stats (https://docs.scipy.org/doc/scipy/,
accessed on 27 July 2021).

2.9. Statistical Analysis

Statistical analyses were performed using the SPSS Statistics Software (version 18.0,
New York, NY, USA). One-way ANOVA evaluated data and the comparative analysis was
conducted using Duncan’s test. Statistical results are shown in mean and standard error
and p < 0.05 was considered statistically significant.

http://www.drive5.com/uparse/
http://bioconductor.org/packages/release/bioc/html/ropls.html
http://bioconductor.org/packages/release/bioc/html/ropls.html
https://cloud.majorbio.com
http://www.genome.jp/kegg/
https://docs.scipy.org/doc/scipy/
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3. Results
3.1. Growth Performance

As shown in Table 1, compared with the CON group, the LAG and HAG groups had
significantly increased 21 d body weight, 1–21 d ADG and 42 d body weight (p < 0.05)
and the LAG group had significantly increased 22–42 d ADG (p < 0.05). For the whole
feeding period (1–42 days), LAG and HAG groups had significantly increased ADG and
significantly decreased FCR (p < 0.05). No significant difference was observed among the
ANT, LAG and HAG groups (p > 0.05).

Table 1. Effects of Astragalus-Glycyrrhiza polysaccharides on broiler performance.

Treatments

Items CON ANT LAG HAG SEM p-Value

BW
Initial (g) 46.05 46.30 46.20 45.97 0.15 0.893
21 day (g) 841.72 b 866.47 a 885.78 a 870.14 a 5.05 0.010
42 day (g) 2490.91 b 2581.66 a 2657.41 a 2585.83 a 17.81 0.003
Day1–21

ADFI
(g/d) 48.16 50.20 47.24 46.56 0.67 0.244

ADG (g/d) 37.89 b 39.06 a 39.99 a 39.23 a 0.24 0.009
FCR (g·g) 1.27 1.28 1.18 1.19 0.02 0.121
Day22–42

ADFI
(g/d) 142.78 138.50 148.05 142.55 1.26 0.054

ADG (g/d) 78.53 b 81.68 ab 84.36 a 81.70 ab 0.73 0.029
FCR (g·g) 1.82 1.70 1.76 1.75 0.01 0.296
Day1–42

ADFI
(g/d) 95.11 94.52 97.64 94.55 0.58 0.168

ADG (g/d) 58.21 b 60.37 a 62.18 a 60.47 a 0.42 0.003
FCR (g·g) 1.63 a 1.57 b 1.57 b 1.56 b 0.01 <0.001

Note: The data were shown as means and standard error (SEM) (n = 6). The different lowercase letters in the
same rows indicate significant difference (p < 0.05), while the same or without lowercase letters in the same rows
indicate insignificant difference (p > 0.05). BW: Body weight; ADG: Average daily gain; ADFI: Average daily feed
intake; FCR: Feed conversion rate; CON: basal diet group; ANT: supplement with 500 mg/kg oxytetracycline
calcium; LAG: supplement with 150 mg/kg Astragalus polysaccharides and 75 mg/kg Glycyrrhiza polysaccharides;
HAG: supplement with 300 mg/kg Astragalus polysaccharides and 150 mg/kg Glycyrrhiza polysaccharides.

3.2. Apparent Metabolic Rate

As shown in Table 2, compared with the CON group, the LAG and HAG groups had
significantly increased apparent metabolic rate of energy (p < 0.05) and the LAG group
had significantly increased apparent metabolic rate of the CP (p < 0.05), No significant
difference was observed among the ANT, LAG and HAG groups (p > 0.05). No significant
differences were observed in the apparent metabolic rates of EE, Ca and P among the four
groups (p > 0.05).

Table 2. Effects of Astragalus-Glycyrrhiza polysaccharides on apparent metabolic rate of
nutrients in broilers (%).

Treatments

Items CON ANT LAG HAG SEM p-Value

Energy 70.76 b 74.77 a 74.90 a 75.49 a 0.68 0.043
CP 47.47 b 50.46 ab 52.75 a 49.98 ab 0.63 0.019
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Table 2. Cont.

Treatments

Items CON ANT LAG HAG SEM p-Value

EE 73.73 75.09 75.13 75.93 0.43 0.355
Ca 44.66 45.70 47.20 46.29 0.53 0.399
P 44.16 45.61 46.07 47.15 0.62 0.411

Note: The data were shown as means and standard error (SEM) (n = 6). The different lowercase letters in the
same rows indicate significant difference (p < 0.05), while the same or without lowercase letters in the same rows
indicate insignificant difference (p > 0.05). CP: crude protein; EE: crude fat; Ca: Calcium; P: phosphorus; CON:
basal diet group; ANT: supplement with 500 mg/kg oxytetracycline calcium; LAG: supplement with 150 mg/kg
Astragalus polysaccharides and 75 mg/kg Glycyrrhiza polysaccharides; HAG: supplement with 300 mg/kg Astragalus
polysaccharides and 150 mg/kg Glycyrrhiza polysaccharides.

3.3. Meat Quality

As shown in Table 3, compared with the CON group, the LAG group had significantly
increased pH45min, pH24h and L* values (p < 0.05) and significantly decreased b* value,
shear force and drip loss (p < 0.05), while the HAG group had significantly increased
L* value (p < 0.05) and significantly decreased b* value (p < 0.05). Compared with the
ANT group, the LAG group had significantly increased pH45min and L* values (p < 0.05)
and significantly decreased b* value and shear force (p < 0.05) and the HAG group had
significantly decreased b* value (p < 0.05). Compared with the HAG group, the LAG group
had significantly increased pH45min and significantly decreased shear force (p < 0.05). No
treatment difference was observed in the a* values (p > 0.05).

Table 3. Effects of Astragalus-Glycyrrhiza polysaccharides on meat quality.

Treatments

Items CON ANT LAG HAG SEM p-Value

pH45min 6.24 b 6.24 b 6.50 a 6.24 b 0.04 0.038
pH24h 5.75 b 5.82 ab 5.91 a 5.83 ab 0.02 0.032

L* 46.35 c 49.51 b 52.61 a 51.81 ab 0.65 <0.001
a* 6.79 6.29 6.93 5.69 0.28 0.423
b* 8.51 a 8.65 a 4.34 b 6.32 b 0.51 0.001

Shear force 27.14 a 26.65 a 24.34 b 26.39 a 0.39 0.047
Drip loss 1.62 a 1.08 b 0.96 b 1.39 ab 0.09 0.028

Note: The data were shown as means and standard error (SEM) (n = 6). The different lowercase letters in
the same rows indicate significant difference (p < 0.05), while the same or without lowercase letters in the
same rows indicate insignificant difference (p > 0.05). L*: brightness; a*: redness; b*: yellowness; CON: basal
diet group; ANT: supplement with 500 mg/kg oxytetracycline calcium; LAG: supplement with 150 mg/kg
Astragalus polysaccharides and 75 mg/kg Glycyrrhiza polysaccharides; HAG: supplement with 300 mg/kg Astragalus
polysaccharides and 150 mg/kg Glycyrrhiza polysaccharides.

3.4. Breast Muscle Fatty Acid

As shown in Table 4, compared with the CON group, LAG and HAG groups had
significantly decreased C22:0, total SFA and n-6/n-3 (p < 0.05) and significantly increased
C16:1, C18:1n-9c, C24:1, C18:2n-6, C18:3n-3, C20:2, C22:6n-3, total MUFA, total PUFA and
PUFA/SFA (p < 0.05). Compared with the ANT group, LAG and HAG groups had signifi-
cantly increased C24:1, C18:3n-3, C20:2 and C22:6n-3 (p < 0.05) and significantly decreased
n-6/n-3 (p < 0.05). Compared with the HAG group, the LAG group had significantly
increased C16:1 and C18:1n-9c and significantly increased C18:3n-3 and C22:6n-3 (p < 0.05).
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Table 4. Effects of Astragalus-Glycyrrhiza polysaccharides on the fatty acid composition of breast muscle.

Treatments

Items CON ANT LAG HAG SEM p-Value

SFA
C16:0 20.25 19.49 18.93 19.01 0.21 0.078
C18:0 9.73 9.12 8.86 8.74 0.17 0.189
C22:0 0.72 a 0.61 b 0.56 b 0.57 b 0.02 0.004

MUFA
C16:1 1.27 c 1.40 b 1.38 b 1.54 a 0.02 <0.001

C18:1n-9c 22.25 c 23.51 ab 23.02 b 24.04 a 0.17 <0.001
C22:1n-9 5.80 5.07 6.16 6.48 0.26 0.265

C24:1 1.30 bc 1.16 c 1.55 ab 1.68 a 0.07 0.017
PUFA

C18:2n-6 33.31 b 35.38 a 35.04 a 35.53 a 0.30 0.023
C18:3n-3 2.05 c 2.02 c 2.66 a 2.32 b 0.06 <0.001

C20:2 0.86 b 0.75 b 1.12 a 1.22 a 0.05 <0.001
C20:3n-6 0.34 0.33 0.35 0.37 0.01 0.58
C22:6n-3 0.60 c 0.69 c 1.21 a 1.00 b 0.06 <0.001
Total SFA 30.70 a 29.21 ab 28.35 b 28.32 b 0.34 0.037

Total
MUFA 30.62 c 31.13 bc 32.10 b 33.73 a 0.33 0.001

Total
PUFA 37.15 b 39.15 a 40.32 a 40.43 a 0.36 0.001

PUFA/SFA 1.22 b 1.35 a 1.43 a 1.43 a 0.03 0.004
n-6/n-3 57.83 a 54.42 a 29.82 b 36.80 b 2.99 <0.001

Note: The data were shown as means and standard error (SEM) (n = 6). The different lowercase letters in the
same rows indicate significant difference (p < 0.05), while the same or without lowercase letters in the same rows
indicate insignificant difference (p > 0.05). SFA: saturated fatty acid; MUFA: monounsaturated fatty acids; PUFA:
polyunsaturated fatty acid; CON: basal diet group; ANT: supplement with 500 mg/kg oxytetracycline calcium;
LAG: supplement with 150 mg/kg Astragalus polysaccharides and 75 mg/kg Glycyrrhiza polysaccharides; HAG:
supplement with 300 mg/kg Astragalus polysaccharides and 150 mg/kg Glycyrrhiza polysaccharides.

3.5. Serum and Breast Muscle Antioxidant Function

As shown in Table 5, compared with the CON group, LAG and HAG groups had sig-
nificantly increased T-AOC activity in serum and breast muscle and SOD activity in serum
(p < 0.05) and significantly decreased MDA content in serum and breast muscle (p < 0.05).
Compared with the ANT group, LAG and HAG groups had significantly increased T-AOC
activity in serum and breast muscle and significantly decreased MDA content (p < 0.05) and
the LAG group had significantly increased serum GSH-Px and SOD activities (p < 0.05).
The serum GSH-Px and SOD activities of the LAG group were significantly increased
compared with those of the HAG group (p < 0.05). No treatment difference was observed
in SOD and GSH-Px activities in the breast muscles (p > 0.05).

Table 5. Effects of Astragalus-Glycyrrhiza polysaccharides on antioxidant function of broiler’s serum
and breast muscle.

Treatments

Items CON ANT LAG HAG SEM p-Value

Serum
T-AOC (U/mL) 8.15 b 8. 37 b 9.08 a 8.89 a 0.10 <0.001
GSH-Px (U/mL) 886.94 b 889.72 b 938.34 a 906.35 b 5.64 0.001

SOD (U/mL) 72.40 b 75.85 b 89.19 a 79.47 b 1.76 0.001
MDA (mmol/mL) 5.57 a 5.62 a 3.61 b 3.65 b 0.21 <0.001
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Table 5. Cont.

Treatments

Items CON ANT LAG HAG SEM p-Value

Breast muscle
T-AOC (U/mg prot) 127.98 b 127.74 b 135.54 a 133.24 a 1.13 0.002
GSH-Px (U/mg prot) 3.53 3.51 3.43 3.60 0.04 0.374

SOD (U/mg prot) 76.29 77.44 76.63 78.69 0.78 0.728
MDA (nmol/mg prot) 0.25 a 0.24 a 0.16 b 0.16 b 0.01 <0.001

Note: The data were shown as means and standard error (SEM) (n = 6). The different lowercase letters in the same
rows indicate significant difference (p < 0.05), while the same or without lowercase letters in the same rows indicate
insignificant difference (p > 0.05). T-AOC: total antioxidant capacity; GSH-Px: glutathione peroxidase; SOD: superox-
ide dismutase; MDA: malondialdehyde; CON: basal diet group; ANT: supplement with 500 mg/kg oxytetracycline
calcium; LAG: supplement with 150 mg/kg Astragalus polysaccharides and 75 mg/kg Glycyrrhiza polysaccharides;
HAG: supplement with 300 mg/kg Astragalus polysaccharides and 150 mg/kg Glycyrrhiza polysaccharides.

3.6. Intestine Antioxidant Enzyme mRNA Expression

As shown in Figure 1A–C, compared with the CON group, the expression levels
of SOD1, SOD2 and GSH-Px mRNA in the duodenum of LAG and HAG groups were
significantly increased (p < 0.05). Compared with the ANT group, the LAG and HAG
groups had significantly increased expression levels of SOD2 and GSH-Px mRNA (p < 0.05)
and the LAG group had significantly increased SOD1 mRNA expression (p < 0.05). No
significant difference was observed between the LAG and HAG groups (p > 0.05).

As shown in Figure 1D–F, compared with the CON group, the LAG and HAG
groups had significantly higher SOD1 and GSH-Px mRNA expression levels in the je-
junum (p < 0.05) and the LAG group had significantly higher SOD2 mRNA expression
(p < 0.05). Compared with the ANT group, the expression levels of SOD1 and GSH-Px
mRNA in the LAG and HAG groups were significantly increased (p < 0.05). No significant
difference was observed between the LAG and HAG groups (p > 0.05).

As shown in Figure 1G–I, compared with the CON and ANT groups, LAG and HAG
groups had significantly higher SOD1, SOD2 and GSH-Px mRNA expression levels in
the ileum (p < 0.05). No significant difference was observed between the LAG and HAG
groups (p > 0.05).
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3.7. Cecal Microbial Diversity

The Illumina Miseq high-throughput sequencing platform sequenced the V3-V4 region
of the 16S rRNA gene. After removing incorrect chimeric sequences, 1,144,417 high-quality
reads were generated. An average of 71,526 sequences was obtained per sample with an
average length of 421 bp. As shown in Supplementary Figure S1A, the Shannon dilution
curve reflected the sample’s microbial diversity index. In this experiment, the curves of
each group tended to be flat, indicating that the amount of sequencing data was large
enough and the sequencing results were reasonable. The Shannon index of the LAG group
was the highest, indicating that the LAG group had the highest microbial diversity. Venn
plots could count the number of common and unique operational taxonomic units (OTUs)
in multiple samples. As shown in Supplementary Figure S1B, a total of 743 OTUs were
shared by four groups and the unique OTUs of each group followed the order: LAG group
(4208) > HAG group (4140) > CON group (2909) > ANT group (2785).

3.7.1. Alpha Diversity Analysis

The alpha diversity includes the Chao1 index, Shannon index, Simpson index and
Observed species, which refers to the diversity within a specific area or ecosystem. The
Chao index and Observed species are used to evaluate the richness of the microbiota. A
higher Chao or Observed species indicates a higher richness of the microbiota. A higher
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Simpson index indicates a low microbiota diversity. The data of alpha diversity indexes
are presented in Figure 2A–D. Compared with the CON group, the Shannon index and
Observed species in the LAG group and the Observed species in the HAG group were
significantly increased (p < 0.05). Compared with the ANT group, the Chao1 index, Shannon
index and Observed species in the LAG group (p < 0.05) and the Chao1 index and Observed
species in the HAG group (p < 0.05) were significantly increased. Compared with the HAG
group, the Shannon index in the LAG group was significantly increased (p < 0.05). No
significant difference in the Simpson index was observed among the groups (p > 0.05).
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3.7.2. Beta Diversity Analysis

Beta diversity was used to analyze the similarity of cecal microbiota among different
groups. The differences or similarities of cecal microbial diversity among groups were
comprehensively analyzed by the principal coordinates analysis (PCoA) based on the
Weighted UniFrac distance. As shown in Figure 3, the distances of the samples in the
CON group were scattered, indicating that the samples in this group had poor uniformity.
LAG and HAG groups were wholly separated from the CON and ANT groups, indicating
that LAG and HAG groups changed the bacterial community structure. A crossover was
observed between LAG and HAG groups, suggesting a similarity in the structures of their
cecal microbiota.
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3.7.3. Microflora Structure

At the phylum level, the effects of Astragalus- Glycyrrhiza polysaccharides on the cecal
microbial composition of broilers are shown in Figure 4A,B. The dominant phyla of the
four groups were Bacteroidetes and Firmicutes. CON, ANT, LAG and HAG had relative
abundance values of Bacteroidetes of 49.12%, 54.15%, 40.87% and 40.91%, respectively and
relative abundance values of Firmicutes of 37.67%, 32.42%, 43.97%, 42.49%, respectively.
Compared with the CON and ANT groups, LAG and HAG groups had increased the
relative abundance of Firmicutes and the ratio of Firmicutes and Bacteroidetes(F/B) decreased
the relative abundance of Bacteroidetes. At the genus level, the effect of Astragalus-Glycyrrhiza
polysaccharides on the cecal microbial composition of broilers was shown in Figure 4C,D.
The dominant genera of the four groups were Bacteroides, Oscillospira, Phascolarctobacterium
and Faecalibacterium. Figure 4D showed the significant difference in the relative abundance
of 9 of the top 15 genera among the four treatment groups.

Compared with the CON and ANT groups, LAG and HAG groups increased the
relative abundance of Oscillospira, Parabacteroides and Ruminococcus while decreased the
abundance of Bacteroides, Faecalibacterium, Desulfovibrio and Subdoligranulum. In addition,
the LAG group increased the relative abundance of Phascolarctobacterium.
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Figure 4. Effect of Astragalus-Glycyrrhiza polysaccharides on the abundance of cecal microflora at
phylum and genus level in broilers (A) Relative abundance of cecal microbiota at the phylum level;
(B) Comparison of Firmicutes and Bacteroidetes ratio. (p < 0.05). (C) Relative abundance of cecal
microbiota at the genus level; (D) Relative abundance difference analysis of cecal bacterial species at
the genus level (p < 0.05). Means with different small letters indicate significant differences (p < 0.05).

3.8. Serum Metabolomic Analysis

Through the analysis of apparent performance and gut microbiota, we found that
the production performance of the LAG group was better than that of HAG. Furthermore,
CON and LAG were used to analyze serum metabolites. Orthogonal partial least squares
discriminant analysis (OPLS-DA) was used to distinguish the difference between groups in
positive and negative ion mode. Response permutation testing (RPT) was used to evaluate
the accuracy of the OPLS-DA model. R2Ywas closer to 1, the more stable and reliable the
model; Q2Y was below 0.05 and represented a credible predictive ability. In this experiment,
R2Y was above 0.7 and Q2Ywas below 0.05, indicating a good model prediction ability.
(Supplementary Figure S2). Further OPLS-DA analysis of the data was performed in
positive and negative ion modes; the samples in the same group were clustered closely,
indicating that their metabolites were highly similar and stable and the samples in different
groups were wholly separated, indicating that there were significant differences in serum
metabolites between the CON and LAG group.

As shown in Figure 5A differential volcanic plot, a total of 193 differential metabolites
were identified in the two treatments, of which 113 differential metabolites were signif-
icantly up-regulated and 80 differential metabolites were significantly down-regulated
(VIP ≥ 1.0, p-values < 0.05). Moreover, VIP in the OPLS-DA model was calculated to evalu-
ate the changes in serum metabolites. Metabolites with VIP values > 1.0 and
p-values < 0.05 (t-test) were considered significantly influenced by LAG supplementa-
tion and the top 40 metabolites with the highest VIP values were listed in Figure 5B,
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which revealed that serum metabolites among the two groups formed distinct clusters.
Figure 5C shows that the identified metabolites were functionally annotated through the
KEGG database. The annotated metabolites were mainly focused on the processes of
amino acid metabolism, lipid metabolism, nucleotide metabolism, membrane transport,
etc. Furthermore, as shown in Figure 5D, pathway enrichment and topology analysis were
performed.
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Figure 5. (A) Differential volcano plot of CON and LAG groups, each point in the graph represents a
specific metabolite and larger points indicate higher VIP values. Blue indicates significant downregu-
lation and red indicates significant upregulation. (B) Heatmap combined with hierarchical clustering
of the most significantly influenced metabolites in CON and LAG groups. Only the metabolites with
the highest variable importance in projection (VIP) value in the OPLS-DA model (top 40 named
metabolites) were listed. The t-test was jointly applied with the OPLS-DA to identify the discrepant
metabolites and the p value in the t-test was shown. The heatmap colors represent the relative expres-
sion of metabolites in the sample, with VIP bar graphs of metabolites on the right. The bars’ length
represents the metabolites’ contribution value to the difference between the two groups. The larger
the value, the more significant the difference between the two groups. The bar’s color indicates the
significance of the metabolite difference between the two groups (* 0.01 < p ≤ 0.05, ** 0.001 < p ≤ 0.01,
*** p ≤ 0.001). (C) KEGG pathway, the ordinate, is the second classification of the KEGG metabolic
pathway and the abscissa is the number of metabolites annotated to the pathway. (D) KEGG topology
analysis. Each bubble in the figure represents a KEGG Pathway; the horizontal axis represents the
relative importance of the metabolites in the pathway and the size of the Impact Value; importance of
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the metabolites in the importance of the metabolites in the pathway and the size of the Impact Value;
the vertical axis represents the enrichment significance of metabolites involved in the pathway-log10
(p-value); bubbles of the size represents the Impact Value; the larger the bubble, the greater the
importance of the pathway.

The identified metabolites with an impact value higher than 0.1 and p-values below
0.05 were mainly enriched in two pathways, namely the linoleic acid metabolism pathway
(Impact Value = 0.75, p = 0.004) and glutathione metabolism pathway (Impact Value = 0.16,
p = 0.018). Differential metabolites from the linoleic acid metabolism pathway, including
linoleic acid and gamma-linolenic acid and the glutathione metabolism pathway includes
two differential metabolites, spermine and pyroglutamic acid.

3.9. Correlation Analysis

In order to predict the correlation between the top nine differential bacterial genera
and 21 differential phenotypic indicators, a Pearson correlation analysis was conducted. As
shown in Figure 6, Bacteroides was positively correlated with n-6/n-3, MDA and FCR but
negatively correlated with ADG, L*, T-AOC, GSH-Px, SOD1 mRNA expression, GSH-Px
mRNA expression, MUFA and PUFA (p < 0.05).
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Figure 6. Correlation between the differential cecal microbial community of genera and the phenotype
of broilers by Pearson correlation analysis. Red indicates positive correlation and blue indicates
negative correlation. (* 0.01 < p ≤ 0.05, ** 0.001 < p ≤ 0.01).

Faecalibacterium was positively correlated with n-6/n-3, MDA and FCR but negatively
correlated with ADG, energy, T-AOC, GSH-Px, SOD1 mRNA expression, GSH-Px mRNA
expression, MUFA and PUFA (p < 0.05). Desulfovibrio was positively correlated with n-6/n-3,
MDA and shear force but negatively correlated with ADG, CP, T-AOC, GSH-Px, SOD1
mRNA expression, GSH-Px mRNA expression and MUFA (p < 0.05). Subdoligranulum is only
negatively correlated with energy. Similarly, Oscillospir was only positively correlated with
GSH-Px mRNA expression (p < 0.05). Phascolarctobacterium was positively correlated with pH
45 min, L*, T-AOC, GSH-Px, SOD, SOD1 mRNA expression and SOD2 mRNA expression,
but negatively correlated with n-6/n-3 and b* (p < 0.05). Prevotella was only negatively
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correlated with b* (p < 0.05). Parabacteroides was positively correlated with L*, T-AOC, SOD,
SOD1 mRNA expression, GSH-Px mRNA expression and MUFA but negatively correlated
with FCR, MDA and n-6/n-3 (p < 0.05). Ruminococcus was positively correlated with L*,
GSH-Px, SOD, SOD1 mRNA expression, GSH-Px mRNA expression, MUFA and PUFA, but
negatively correlated with shear force, MDA and n-6/n-3 (p < 0.05). These results indicated
a specific correlation between the bacterial genera and phenotypic indicators.

Since two critical metabolic pathways, linoleic acid metabolism and glutathione
metabolism, were found in metabolites pathway enrichment analysis, we investigated
the correlation of 9 differential bacterial genera with four differential metabolites enriched
in these two pathways by Pearson’s correlation analysis. The heatmap revealed that nine
species were correlated with the top 40 metabolites (Figure 7).
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Figure 7. Correlation between the differential cecal microbial community of genera and the serum
metabolites of broilers by Pearson correlation analysis. Red indicates positive correlation and blue
indicates negative correlation. (* 0.01 < p ≤ 0.05, ** 0.001 < p ≤ 0.01, *** p ≤ 0.001).

Differential metabolites from the linoleic acid metabolism pathway, including linoleic
acid and gamma-linoleic acid, negatively correlated with Bacteroides, Faecalibacterium and
Desulfovibrio; moreover, linoleic acid was positively correlated with Parabacteroides (p < 0.05).
Differential metabolites from the glutathione metabolism pathway, including pyroglutamic
acid and spermine. Pyroglutamic acid was positively correlated with Bacteroides, Faecalibac-
terium and Desulfovibrio but negatively correlated with Parabacteroides and Ruminococcus;
moreover, spermine was positively correlated with Faecalibacterium (p < 0.05). In addition,
many differential metabolites such as gluconic acid, L-proline and nicotinylglycine were
significantly correlated with certain bacteria such as Bacteroides, Faecalibacterium and Desul-
fovibrio (p < 0.05). These results suggested that LAG-mediated change of certain bacteria
were correlated with metabolites in linoleic acid metabolism and glutathione metabolism,
indicating the critical roles of these bacteria in LAG-associated beneficial effects.

Correlation analysis of the top 40 differential serum metabolites and 21 differential
phenotypic indicators showed that in Figure 8.
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Pearson correlation analysis. Red indicates positive correlation and blue indicates negative correlation.
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Linoleic acid and gamma-linoleic acid were positively correlated with ADG, T-AOC,
GSH-Px, SOD1 mRNA and GSH-Px mRNA but negatively correlated with FCR and MDA
(p < 0.05). Gamma-linoleic acid was positively correlated with SOD, PUFA and PUFA/SFA
but negatively correlated with SFA (p < 0.05). Conversely, Pyroglutamic acid was positively
correlated with FCR, shear force, drip loss, MDA and n-6/n-3 but negatively correlated with
ADG, T-AOC, GSH-Px, SOD, SOD1mRNA and GSH-Px mRNA (p < 0.05). Spermine was
positively correlated with GSH-Px mRNA but negatively correlated with b*. In addition, many
differential metabolites such as inosine, guanine and cytidine were significantly correlated
with phenotypic indicators such as T-AOC, GSH-Px, SOD, SOD1mRNA and GSH-Px mRNA
(p < 0.05). These results suggested that specific phenotypic indicators that LAG changed
were correlated with metabolites in linoleic acid metabolism and glutathione metabolism,
indicating the critical roles of these indicators in LAG-associated beneficial effects.

4. Discussion

Under the comprehensive “ban on antibiotics”, exploring “new, efficient, safe and
green” antibiotic substitutes has gradually become a research hotspot in the feed industry.
Several studies showed that adding plant extracts to poultry diets can improve poultry
immunity, prevent disease and promote poultry growth [6,23]. Adding APS to poultry diets
can increase ADFI, reduce FCR [14] and alleviate growth decrease under cyclophosphamide
and lipopolysaccharide stress in broilers [15,16]. Adding 10 g/kg of Astragalus powder
to the diet can increase the ADG and reduce the FCR of broilers [24]. Drinking water
containing Glycyrrhiza extract could improve body weight, ADFI and ADG and reduce FCR
in broilers under heat stress [25]. Adding 500 mg/kg of Glycyrrhiza extract to high-density
broilers diets effectively improves weight gain in late growth and throughout the growth
period [26]. Our experiment showed that LAG and HAG supplementation increased
body weight and ADG and decreased FCR. In addition, linoleic acid and gamma-linoleic
acid were positively correlated with ADG but negatively correlated with FCR; conversely,
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pyroglutamic acid was positively correlated with FCR, indicating that the addition of
Astragalus-Glycyrrhiza polysaccharide could improve the growth performance of broilers by
altering the linoleic acid metabolism and glutamate metabolism pathways.

The nutrient metabolic rate is an important indicator to measure the digestion and
absorption of nutrients by animals. Its level directly affects the growth performance of
animals and reflects the diet’s nutritional value. Several studies have shown that dietary
supplementation with APS can improve the metabolism of energy and CP [16]. Ibrahim
et al. [27] showed that adding 3% Glycyrrhiza glabra extract residue to the broiler diet can
increase CP’s apparent metabolic rate and decrease fat’s apparent metabolic rate. Our
experiment showed that LAG and HAG groups increased broiler diets’ apparent metabolic
energy rate. Moreover, the LAG group achieved a higher apparent metabolic rate of CP
than antibiotics. It speculated that the improvement of nutrient apparent metabolic rate
might be related to the improvement of production performance, further indicating that
the Astragalus-Glycyrrhiza polysaccharides have a specific promotion effect on the growth
and feed utilization of broilers.

Muscle pH, shear force and drip loss are indicators for evaluating the physicochemical
properties of meat quality. The decrease in pH after animal slaughter is related to the glycolysis
of muscle glycogen. Stress accelerates glycogenolysis in the body and causes the rapid decrease
of muscle’s pH, seriously affecting muscle’s color and taste [28]. Galli et al. [29] showed that
adding microencapsulated organic acids to broiler diets can reduce the rate of glycolysis
and pH decline and improve meat quality. A high pH24h results in a low shear force, high
water-holding capacity and improved meat quality [30]. Studies showed that the fermented
Astragalus-Glycyrrhiza water extract as a feed additive could reduce drip loss of breast and
leg muscles [31]. Our experiment found that the LAG group increases broilers’ pH45min
and pH24h and reduces drip loss and shear force, indicating that the moderate addition of
Astragalus-Glycyrrhiza polysaccharides could effectively alleviate the glycolysis post-slaughter
and maintain the juiciness of the meat. This finding shows that the Astragalus-Glycyrrhiza
polysaccharides are better at improving meat quality than antibiotics.

The color of meat, the most intuitive external expression for consumers to evaluate
the freshness of meat, is usually expressed by L*, a* and b* values. The L* value indicates
the muscle’s oxidized myoglobin content and the normal range is 46–53. Within this
range, a higher value represents improved gloss. The a* value represents the content of
deoxy-myoglobin in the muscle and a higher value indicates improved meat color and
fresh meat. The b* value reflects the content of oxidized methemoglobin and a lower value
indicates fresh meat [26,32,33]. Alagawany et al. [21] showed that drinking fermented
Astragalus-Glycyrrhiza water extract improved the a* value and decreased the b* value and
drip loss in broilers. Our experiment showed that the L* value was within the normal range
and LAG and HAG supplementation increased the L* value and decreased the b* value,
indicating that the addition of Astragalus-Glycyrrhiza polysaccharides helps in improving
the freshness of broiler meat.

Chicken has become a popular functional food for consumers because of its high
protein, low cholesterol and low saturated fatty acids [34]. The fatty acid content in
chicken primarily consists of unsaturated fatty acids, such as linoleic acid (C18:2n-6),
linolenic acid (C18:3n-3) and arachidonic acid (C20:4) is an essential precursor of chicken
flavor [35]. Our results showed that LAG and HAG groups increased the contents of
C18:2n-6 and C18:3n-3 in chicken and the content of total PUFA, thereby improving the
flavor of the meat. Studies showed that imbalances in the ratios of PUFA to SFA and
PUFA n-6 to PUFA n-3 are associated with various diseases, such as cardiovascular disease,
inflammatory disease, diabetes and autoimmune diseases [36,37]. Hu et al. [38] showed
that high PUFA n-3 and low SFA contents can improve meat quality and nutritional value,
thereby reducing the risk of cardiovascular disease. PUFA n-3 has excellent anti-aging, anti-
inflammatory, antioxidant, anti-cancer, anti-arthritis, anti-depressant, anti-hypertensive
and insulin-sensitizing effects and cardiovascular health benefits [39]. The present study
showed that LAG and HAG groups increased the ratio of PUFA to SFA and decreased the
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ratio of PUFA n-6 to PUFAn-3. In addition, gamma-linoleic acid was positively correlated
with PUFA and PUFA/SFA but negatively correlated with SFA, indicating that the addition
of Astragalus-Glycyrrhiza polysaccharide could improve meat quality by changing the
linoleic acid metabolic pathway.

GSH-Px, SOD, T-AOC and MDA are indicators used to measure the body’s antioxidant
capacity. Studies showed that APS could scavenge free radicals in time by activating
various enzyme activities in the body, reducing oxidative stress in animals and enhancing
animal immune responses [40]. The present experiment showed that LAG and HAG
groups increased the expression levels of SOD1 mRNA, SOD2 mRNA and GSH-Px mRNA
in the small intestine (duodenum, jejunum and ileum) of broilers. Moreover, the LAG
supplementation increased serum T-AOC, SOD, GSH-Px and breast muscle’s T-AOC
activity. At the same time, it decreased the MDA content in serum and breast muscle.
Similar results were reported by Wu et al. [13] who found that adding the diet with
0.5–1.0 g/kg APS could improve the growth performance and serum SOD, GSH-Px, IgG,
IgM and IgA and reduce the MDA content in broilers. Adding Astragalus root powder
can enhance broilers’ growth performance, antioxidant status and serum metabolites and
improve liver and kidney functions by improving the antioxidant status [41,42]. Adding
the Glycyrrhiza extract to chicken patties reduces the production of MDA and increases the
pH and a* values in the patties, thereby improving the oxidative stability of chicken patties
and prolonging the shelf life [43].

The change of gut microbiome disrupts gut function when broilers are immuno-
suppressed by environmental stress or viral infection [44]. Studies showed that some
plant polysaccharides reaching the distal gastrointestinal tract could be fermented by the
gut microbiota and further regulate the gut microenvironment [45]. Broilers fed with γ-
irradiated Astragalus polysaccharides show higher bacterial OTUs and the Shannon index
but decrease the Simpson index than control and cyclophosphamide-treated groups [46].
Consistent with these findings, our study showed that LAG and HAG had more bacterial
OTUs than the CON and ANT groups. Moreover, the result of Alpha diversity revealed
that LAG and HAG groups increased the Chao1 index and Observed species. Beta diversity
results showed that LAG and HAG groups altered the gut microbiota structure and compo-
sition, indicating that dietary supplementation with Astragalus-Glycyrrhiza polysaccharide
increased the richness and diversity of cecal microbiota of broilers.

The dominant phyla in this experiment are Bacteroidetes and Firmicutes. Many bacteria
belonging to Firmicutes are involved in energy metabolism and maintenance of intestinal
health [47]. An increase in F/B favors nutrient absorption and is closely related to gut
microbiota composition and the ability of the host to acquire energy [48,49]. The present
experimental study showed that adding Astragalus-Glycyrrhiza polysaccharides increased F/B,
which was beneficial to the absorption of nutrients by intestinal microorganisms in broilers.

At the genus level, the dominant genera with significant differences in this experiment
are Bacteroides, Oscillospira, Phascolarctobacterium and Faecalibacterium. Bacteroides is one of
the predominant genera of anaerobic bacteria in the chicken cecum [50]. Previous stud-
ies have shown that Bacteroides was positively related to serum inflammatory cytokines
TNF-a, IL-1b and IL-6 and dietary supplementation with APS and GPS could inhibit the
proliferation of Bacteroides [20]. Liu et al. [46] showed that the abundance of Bacteroides
in broilers fed with γ-irradiated Astragalus polysaccharides was lower than those in the
cyclophosphamide-treated groups. These findings are consistent with the results of the
present experiment that LAG and HAG supplementation reduce the abundance of Bac-
teroides and Bacteroides were positively correlated with MDA but negatively correlated with
T-AOC GSH-Px, SOD1 mRNA expression and GSH-Px mRNA expression. It has been
reported that Oscillospira could produce butyrate by gluconate and human health is posi-
tively correlated with Oscillospira [51,52]. The supplementation of probiotic preparations
and Bacillus subtilis in laying hen diets increases the abundance of Oscillospira, decreases
the abundance of pathogenic E. coli and improves the performance and intestinal function
in laying hens [53]. Our experiment showed that Oscillospira was positively correlated with
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GSH-Px mRNA expression and LAG and HAG supplementation increased the abundance
of Oscillospira. Hou et al. [54] found that the abundance of Phascolarctobacterium in the
gut microbiota in patients with ulcerative colitis was remarkably reduced compared with
that in healthy individuals. Plantain is a widely used remedy for constipation. Jalanka
et al. [55] found that plantain could increase the abundance of Phascolarctobacterium in
the fecal microorganisms of constipated patients and reduce constipation. In this exper-
iment, LAG supplementation increased the relative abundance of Phascolarctobacterium
while Phascolarctobacterium was positively correlated with T-AOC, GSH-Px, SOD, SOD1
mRNA expression and SOD2 mRNA expression. Maier et al. [56] reported that enhanc-
ing the activity of Faecalibacterium does not enhance the integrity of the intestinal barrier.
Liu et al. [46] found that APS supplementation significantly decreased the abundance of
Faecalibacterium in broilers. In our experiment, LAG and HAG supplementation decrease
the relative abundance of Faecalibacterium. Faecalibacterium was positively correlated with
MDA but negatively correlated with T-AOC, GSH-Px, SOD1 mRNA expression and GSH-
Px mRNA expression, indicating that the Astragalus-Glycyrrhiza polysaccharides could
improve antioxidant function by modulating gut microbiota in broilers.

Metabolomics is widely utilized to investigate the impact of changes in animal diet,
environment, genes and gut microbial communities on the response pathways of metabolic
systems [57]. In this study, untargeted metabolomics of broiler serum were analyzed by
LC-MS. Through the OPLS-DA model analysis, it was found that there was a significant
difference between LAG and CON groups, indicating that the addition of Astragalus-
Glycyrrhiza polysaccharides could significantly affect the metabolism of broiler serum. A
total of 193 significant differential metabolites were identified for both groups, of which
113 differential ions were significantly up-regulated and 80 differential ions were signif-
icantly down-regulated. Through the KEGG database, the identified metabolites were
functionally annotated. Amino acid metabolism, lipid metabolism, nucleotide metabolism
and membrane transport are these compounds’ primary biological metabolic and signal
transduction processes. Furthermore, the pathway of linoleic acid metabolism and glu-
tathione metabolism pathway were identified as the most significant pathway through
KEGG topology analysis.

Linoleic acid belongs to omega-6 PUFA and is essential for normal growth and devel-
opment, cell function and signal transduction and immune response [58]. Linoleic acid can
be elongated and desaturated to other bioactive omega-6 PUFAs, such as gamma-linolenic
acid (18:3n6) and arachidonic acid (20:4n6). Subsequently, arachidonic acid can be con-
verted to bioactive compounds, such as prostaglandins and leukotrienes. These eicosanoids
are important in the normal metabolic function of tissues and cells [59]. Studies have shown
that supplementing 1% linoleic acid in parental pigeon diets could improve the health of
pigeons by increasing antioxidant capacity and lipid metabolism [60]. Linoleic acid could
also improve antioxidative capacity in laying hens [61] and lipid metabolism in broilers and
ducks [62,63]. The high intake of linoleic acid is associated with reduced risk for heart dis-
eases and type 2 diabetes [64]. Linoleic acid induced autophagy and increased antioxidant
ability through the adenosine monophosphate-activated protein kinase (AMPK) signaling
pathway and the AMPK-target of rapamycin (TOR) signaling pathway in hepatocytes
in vitro and could greatly aid in the prevention and treatment of multiple pathologies [65].
In our study, LAG supplementation elevated linoleic acid levels and gamma-linolenic acid
levels. T-AOC, GSH-Px, SOD and GSH-Px mRNA were positively correlated with these
two metabolites, indicating that LAG could improve antioxidant capacity by modulating
linoleic acid metabolism. In addition, Parabacteroides was positively correlated with linoleic
acid. Conversely, Bacteroides, Faecalibacterium and Desulfovibrio were negatively correlated
with linoleic acid and gamma-linolenic acid, suggesting that these species might participate
in the modulation of linoleic acid metabolism by LAG.

The glutathione metabolism pathway includes two differential metabolites, spermine
and pyroglutamic acid, which were changed by LAG. Spermine and pyroglutamic acid
are intermediates in glutathione metabolism. Glutathione plays a critical role in protecting
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cells from oxidative damage and the toxicity of xenobiotic electrophiles and maintaining
redox homeostasis [66]. Studies have shown that elevated levels of pyroglutamic acid are
associated with impaired glutathione metabolism [67,68]. In our study, LAG supplemen-
tation reduced the levels of pyroglutamic acid and T-AOC, GSH-Px, SOD, SOD1mRNA
and GSH-Px mRNA were negatively correlated with pyroglutamic acid, indicating the
protective effect of LAG supplementation on glutathione metabolism. In addition, Bac-
teroides, Faecalibacterium and Desulfovibrio were positively correlated with pyroglutamic acid.
Conversely, Parabacteroides and Ruminococcus were negatively correlated with pyroglutamic
acid. Faecalibacterium was positively correlated with spermine, suggesting that these species
might participate in the modulation of glutathione metabolism by LAG.

5. Conclusions

This study showed that dietary supplementation with 150 mg/kg Astragalus polysac-
charides and 75 mg/kg Glycyrrhiza polysaccharides or 300 mg/kg Astragalus polysaccha-
rides and 150 mg/kg Glycyrrhiza polysaccharides could improve production performance,
antioxidant function, meat quality and modulate the diversity, richness and composi-
tion of cecal microbiota of broilers, which achieved the effects of Terramycin calcium.
In addition, the metabolomics analysis showed that supplementation with 150 mg/kg
Astragalus polysaccharides and 75 mg/kg Glycyrrhiza polysaccharides screened some dif-
ferential metabolites, mainly concentrated in the linoleic acid metabolism and glutathione
metabolism pathway. Correlation analysis showed that production performance, antioxi-
dant function and meat quality significantly correlated with cecal microbiota and serum
metabolites. Overall, these findings indicate that dietary supplementation with 150 mg/kg
Astragalus polysaccharides and 75 mg/kg Glycyrrhiza polysaccharides could improve pro-
duction performance, antioxidant function and meat quality by changing cecal microbiota
and serum metabolites, which would further provide helpful information for developing
effective and safe antibiotic alternatives in the poultry industry.
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