
MINISTRY OF EDUCATION AND SCIENCE OF UKRAINE

SUMY STATE UNIVERSITY

FACULTY OF ELECTRONICS AND INFORMATION TECHNOLOGY

COMPUTER SCIENCE DEPARTMENT

 "Approved for defense."

Acting Head of the Department

 Igor SHELEHOV

(signature)

09.06.2023

GRADUATION THESIS

for obtaining the educational degree of Bachelor

in the specialty 122 - Computer Science,

educational-professional program "Informatics"

on the topic: " REST API for a store management system using Flask"

by the student of group IN-95AH, Ukpongson Miracle Praise.

The Bachelor Graduation Thesis contains the results of original research. The use of

ideas, results, and texts of other authors is properly referenced to the respective sources.

Ukpongson Miracle P.

(signature)

Supervisor

Candidate of Physical and Mathematical

Sciences, Senior lecturer. Oleksiienko G.A.

 (signature)

 Sumy – 2023

2

SUMY STATE UNIVERSITY

FACULTY OF ELECTRONICS AND INFORMATION TECHNOLOGY

 COMPUTER SCIENCE DEPARTMENT

 «Approved»

Acting Head of the Department

 Igor SHELEHOV

(signature)

TASK FOR THE GRADUATION THESIS

to obtain the educational degree of Bachelor

in the specialty 122 - Computer Science,

educational-professional program "Informatics"

by the student of group IN-95AH, Ukpongson Miracle Praise.

1. Topic of the Bachelor Graduation Thesis: "REST API FOR A STORE MANAGEMENT

SYSTEM USING FLASK"

аpproved by the order of SumDU on June 1, 2023.№ 0475-VI

2. The deadline for the submission of the Bachelor Graduation Thesis until June 9, 2023.

3. Input data for the qualification work

4. Table of Contents for the Explanatory Memorandum (List of questions to be addressed)

1) Analysis of the subject area, defining the purpose, and forming the tasks of the Bachelor

Graduation Thesis. 2) Review of the theoretical material. 3) Development of the REST API for

a store management system using Flask4) Analysis of the obtained results.

5. List of graphic materials (with specific mention of mandatory drawings)

6. Project consultants (with the corresponding sections of the project they are associated with).

Section Consultant

Signature, date

The assignment has been

issued

The assignment has been

accepted

7. Date of assignment issuance «____» ________________ 20 ___

The assignment has been

accepted for execution

 Supervisor

3

Calendar Plan

№ Titles of the stages of thе Bachelor Graduation Thesis Deadline Note

1
Analysis of the subject area, defining the purpose, and forming the

tasks of the Bachelor Graduation Thesis

2 Review of the theoretical material

3 Development of the automation of an inventory system

4 Analysis of the obtained results

5 Bachelor Graduation Thesis Formatting

 (signature) (signature)

Higher education student

Supervisor

 (signature) (signature)

4

ABSTRACT

Note: 41 рages, 15 figures, 14 references, 1 app.

Research object: Rest Api For a Store Management System Using Flask

Research objective: is to completely design, implement and deploy a

REST API service for Store Management.

Research methods: Comparative analysis, experimental research,

literature reviews, deductive analysis.

Results: a fully functional and deployed REST API, with implemented

error handling, which allows it stay operational with limited developer oversight.

REST API’S, FLASK, PYTHON, POSTGRES, STORE MANAGEMENT,

DATABASE MANAGEMENT, POSTMAN

5

CONTENTS

ABSTRACT .. 4

INTRODUCTION .. 6

1 LITERATURE REVIEW .. 7

1.1 Analysis of the current state of the subject area 7

1.2 Review of known solutions ... 8

1.3 System requirements ... 9

2 SELECTION OF PROBLEM SOLVING METHODS 12

2.1 Selection of programming languages ... 12

2.2 Selection a framework for implementation 12

2.3 Selection of DBMS ... 14

2.4 Selection of Deployment Environment .. 15

3 SOFTWARE IMPLEMENTATION .. 17

3.1 Components and architectural .. 17

3.2 Implementation of the REST API ... 19

3.3 Deployment the REST API ... 24

CONCLUSION ... 30

REFERENCES ... 31

ACKNOWLEDGMENT .. 32

APPENDIX ... 33

6

INTRODUCTION

In recent years, the growth of online stores and e-commerce has revolutionized the retail

industry. With the increasing adoption of digital platforms, businesses are presented with new

opportunities for expansion and reaching a wider customer base. However, managing store

inventory and items effectively in the online realm poses unique challenges that require

innovative solutions.4

To address these challenges, the design and implementation of a robust and user-

friendly application programming interface (API) can greatly enhance store and item

management systems. The use of a RESTful API, in particular, provides a standardized and

flexible approach to building web services and facilitates integration with various platforms

and technologies.

The primary objective of this thesis is to design and implement a REST API using the

Flask framework for a comprehensive store and item management system. This API aims to

streamline the process of managing store inventory, enabling businesses to efficiently handle

items, track store contents, and retrieve item information. By utilizing Flask, a lightweight and

extensible web framework written in Python, we can leverage its simplicity and flexibility to

develop a scalable and efficient API.

The scope of this thesis encompasses the development of an API that supports essential

functionalities for store and item management. This includes creating stores, managing item

details (such as name and price), retrieving item information, and searching for specific items

based on various tags. By focusing on these core functionalities, the API will provide users

with a solid foundation for effectively managing their online stores.

Through the implementation of this REST API, we aim to improve the efficiency and

accuracy of store and item management, empowering users to effectively handle inventory,

and optimize their overall operations. The thesis will delve into the design, implementation,

and evaluation of the API, providing insights into the technical aspects of its development and

its potential impact on store management systems.

In the following sections, we will explore existing literature on REST APIs, delve into

the Flask framework, review related store management systems, outline the system

requirements, present the design and architecture of the API, discuss the implementation

details, and evaluate the performance and usability through testing. Through this thesis, we aim

to contribute to the field of store management systems by providing a practical and efficient

solution for store and item management through the development of a REST API using Flask.

7

1 LITERATURE REVIEW

1.1 Analysis of the current state of the subject area

In this literature review, we will explore relevant studies, research papers, and existing

frameworks that are pertinent to the design and implementation of a REST API using Flask for

store and item management systems.

REST APIs [4][5]: Representational State Transfer (REST) is an architectural style for

designing networked applications, widely used for building web services. REST APIs provide

a standardized approach for creating, updating, and retrieving resources over the web through

the use of HTTP methods such as GET, POST, PUT, and DELETE. The simplicity, scalability,

and statelessness of REST make it an ideal choice for developing APIs in various domains.

The principles of REST, including the use of resource-oriented URLs, stateless

communication, and hypermedia as the engine of application state (HATEOAS)[10], ensure

interoperability and ease of integration.

Store Management Systems: Several store management systems are available in the

market, each offering a range of features for efficiently managing store inventory and items.

For instance, Shopify is a widely-used e-commerce platform that provides comprehensive store

management capabilities, including inventory tracking, order processing, and reporting.

WooCommerce, another popular e-commerce platform that integrates with WordPress and

provides extensive features for managing products, inventory, and customer relationships..

Understanding these existing systems helps in identifying best practices and functionalities that

can be incorporated into the design and implementation of the REST API for store and item

management.

By reviewing the existing literature on REST APIs, Flask framework, and store

management systems, we can identify proven methodologies, design patterns, and best

practices that can inform the development of our REST API for store and item management.

This knowledge base will enable us to make informed decisions in the design and

implementation stages, ensuring the API's efficiency, scalability, and usability.

In the following sections, we will build upon this foundation and leverage the

knowledge gained from the literature review to design and implement a robust and user-

friendly REST API using Flask for store and item management.

8

1.2 Review of known solutions

In this section, we will review and analyse three well-known solutions that utilize REST

APIs for store-related applications. These solutions have been widely adopted by businesses

and developers to enhance store management, integrate with external systems, and improve the

overall customer experience. The following are the reviewed solutions:

1. Shopify API [1]:

 Overview: Shopify, a popular e-commerce platform, provides a robust RESTful

API that enables developers to build applications and integrations with Shopify

stores.

 Functionality: The Shopify API allows for managing various aspects of the

store, including products, orders, customers, and inventory. Developers can

create custom storefronts, automate tasks, and integrate third-party systems

using the API.

 Benefits: The Shopify API provides a comprehensive set of endpoints and

resources, allowing businesses to extend the capabilities of their Shopify stores

and streamline their e-commerce operations. The API's scalability and

developer-friendly features make it a preferred choice for many businesses.

2. WooCommerce API [9]:

 Overview: WooCommerce, a popular WordPress plugin for online stores, offers

a REST API that allows developers to interact with WooCommerce stores

programmatically.

 Functionality: The WooCommerce API provides endpoints for managing

products, orders, customers, and other store-related data. Developers can

leverage the API to create custom storefronts, automate processes, and build

personalized shopping experiences.

 Benefits: The WooCommerce API offers seamless integration with WordPress-

powered online stores, providing developers with flexibility and customization

options. The API's extensive documentation and active developer community

make it a reliable solution for businesses looking to enhance their

WooCommerce stores.

3. Square API [9]:

9

 Overview: Square, a leading payment processing and point-of-sale provider,

offers a comprehensive REST API for developers to build applications that

interact with Square's services.

 Functionality: The Square API enables developers to manage inventory, process

payments, track sales, and access other store-related data. It allows businesses

to accept payments, manage transactions, and synchronize data across various

systems.

 Benefits: The Square API provides a unified solution for payment processing

and store management. It offers robust features and developer-friendly

documentation, making it a popular choice for businesses across different

industries.

These reviewed solutions demonstrate the effectiveness and versatility of REST APIs

in-store management. They showcase how businesses can leverage these APIs to extend the

functionality of their stores, integrate with external systems, and provide seamless customer

experiences. By studying these known solutions, we gain valuable insights into the best

practices, design patterns, and implementation strategies employed in building REST APIs for

store-related applications.

1.3 System requirements

The system requirements subsection outlines the functional and non-functional

requirements of the REST API for store and item management. These requirements define the

essential features and performance expectations of the system.

Functional Requirements:

1. Store Management:

 Create a new store with details such as name, address, and contact

information.

 Update store information, including name, address, and contact details.

 Retrieve all items in a store.

 Delete a store from the system.

2. Item Management:

 Add a new item to a store with details such as name and price.

 Update item details.

 Delete an item from a store.

10

 Retrieve item details.

 Search for items based on specific tags.

3. User Authentication:

 Implement user authentication mechanisms to secure access to the API

endpoints.

 Allow users to register and create an account.

 Authenticate users using credentials such as username and password.

 Provide token-based authentication using JSON Web Tokens (JWT) to

authenticate subsequent API requests.

Non-functional Requirements:

1. Performance:

 The API should support concurrent user requests without significant

degradation in performance.

 The system should be capable of handling a high volume of data without

compromising performance.

2. Security:

 Implement secure communication over HTTPS to protect data during transit.

 Employ authentication mechanisms, such as token-based authentication using

JWT, to ensure that only authorized users can access protected endpoints.

 Implement schemas for proper input validation and data sanitization

techniques to prevent common security vulnerabilities, such as SQL injection

or cross-site scripting (XSS).

3. Scalability:

 Design the system to be scalable, allowing for future growth in the number of

stores and items.

 Ensure that the database architecture and API design can handle increasing

amounts of data and user traffic.

4. Error Handling:

 Implement comprehensive error handling mechanisms to provide meaningful

error messages and proper HTTP status codes in case of invalid requests or

system failures.

 Handle exceptions gracefully and log error details for debugging and

troubleshooting purposes.

11

5. Documentation:

 Provide thorough documentation for the API, including detailed descriptions

of endpoints, request/response formats, and authentication procedures.

 Document any required dependencies and setup instructions for developers

who want to use the API.

By defining these system requirements, we establish the functional expectations and

performance benchmarks for the REST API. These requirements guide the subsequent stages

of design, implementation, and testing, ensuring that the API meets the desired objectives of

efficient store and item management.

12

2 SELECTION OF PROBLEM SOLVING METHODS

In this section, we will discuss the methods chosen to solve the problem of designing

and implementing a REST API for store and item management. These methods, including

Python, Flask, Flask-Smorest, Flask-JWT-Extended, and the databases used, have been

carefully selected to ensure the successful development and deployment of the API. Let's delve

into each of these methods.

2.1 Selection of programming languages

Python Programming Language [2]:

Python has been chosen as the primary programming language for developing the REST

API. Python's simplicity, readability, and extensive library support make it an ideal choice for

web development projects. Its ecosystem of frameworks and tools provides developers with

the necessary resources for efficient API development and maintenance.

Advantages of Python Programming Language:

 Simplicity: Python's clean and readable syntax reduces development time and enhances

code maintainability.

 Extensive library support: Python offers a vast collection of libraries and frameworks

that expedite development tasks and provide ready-to-use functionalities.

 Large community: Python has a large and active community of developers who

contribute to its growth, provide support, and share resources.

Disadvantages of Python Programming Language:

 Performance: Python's interpreted nature can result in slower execution speed

compared to compiled languages.

 Global Interpreter Lock (GIL): The GIL can limit parallel execution and affect

performance in multi-threaded applications.

2.2 Selection a framework for implementation

Flask Web Framework [3]:

Flask, a lightweight and flexible web framework, has been selected as the foundation

for building the REST API. Flask's simplicity, scalability, and extensive community support

make it a popular choice for developing web applications. Its modular design allows for easy

13

integration of additional functionalities and extensions, making it suitable for building robust

APIs.

Advantages of Flask Web Framework:

 Lightweight and flexible: Flask's minimalistic design allows developers to customize

components and build APIs according to specific requirements.

 Scalability: Flask's modular architecture enables easy addition of functionalities and

extensions as the API grows.

 Extensive community support: Flask has a large community of developers who

contribute plugins, extensions, and resources, making it easy to find solutions and get

help when needed.

Flask-Smorest [7]:

Flask-Smorest, an extension for Flask, has been utilized to facilitate the development

of a well-structured and documented RESTful API. This extension simplifies the process of

defining and documenting API endpoints, request/response schemas, pagination, sorting, and

filtering capabilities. Flask-Smorest streamlines the API development process and enhances

the overall maintainability and readability of the codebase.

Advantages of Flask-Smorest:

 Well-structured and documented APIs: Flask-Smorest simplifies the process of

defining and documenting API endpoints, resulting in APIs that are easy to understand

and use.

 Built-in support for pagination, sorting, and filtering: Flask-Smorest provides

convenient features for handling data manipulation operations in APIs.

Flask-JWT-Extended [6]:

Flask-JWT-Extended, another Flask extension, has been employed to handle

authentication and authorization in the REST API. This extension adds support for JSON Web

Tokens (JWT) and provides features such as token generation, token validation, and role-based

access control. Flask-JWT-Extended enhances the security of the API by ensuring authorized

access to protected endpoints and securing communication between the client and server.

Advantages of Flask-JWT-Extended:

 Authentication and authorization support: Flask-JWT-Extended allows for secure

authentication using JSON Web Tokens (JWT) and enables role-based access control.

14

 Token generation and validation: Flask-JWT-Extended provides functionality for

generating and validating JWTs, ensuring the security of the API.

2.3 Selection of DBMS

Database Management Systems:

During the testing phase, the SQLite database management system was used for its

simplicity and ease of setup. SQLite is a self-contained, serverless, and file-based database

engine that is widely used for development and testing purposes. It provides the necessary data

storage capabilities required for the initial stages of the project.

Advantages of SQLite:

 Simplicity and ease of setup: SQLite is a lightweight and file-based database system

that requires minimal configuration, making it easy to set up and use.

 Suitable for development and testing: SQLite is often used for development and testing

purposes due to its simplicity and self-contained nature.

For the final implementation of the project, the PostgreSQL database management

system has been chosen. PostgreSQL is a powerful, open-source, and scalable relational

database system. It offers advanced features, transactional support, and excellent performance,

making it suitable for production environments. The use of PostgreSQL ensures data integrity,

reliability, and efficient querying capabilities for the store and item management system.

Advantages of PostgreSQL:

 Advanced features and scalability: PostgreSQL offers advanced database features,

including support for complex queries, indexing, and transactional support. It is highly

scalable and can handle large volumes of data efficiently.

 Reliability and data integrity: PostgreSQL is known for its robustness and data integrity

features, making it suitable for production environments where data consistency is

crucial.

 Open-source and community-driven: PostgreSQL is an open-source database system

with an active community that provides support, updates, and extensions.

By leveraging Python, Flask, Flask-Smorest, and Flask-JWT-Extended, we benefit

from their collective features, community support, and extensive documentation. These

15

methods allow for rapid development, structured API design, enhanced security, and efficient

request handling.

Additionally, the choice of SQLite during the testing phase and PostgreSQL for the

final implementation reflects the project's progression and the need for a robust and scalable

database solution.

Alternatives that could be considered for similar problems:

 For programming languages, alternatives to Python include JavaScript (with Node.js),

Ruby, Java, C#, and Go. Each alternative has its own advantages and disadvantages,

such as performance, ecosystem support, and community size.

 Alternative frameworks to Flask for API implementation include Django, Express.js,

Ruby on Rails, ASP.NET, and Gin. These frameworks offer different features,

conventions, and development approaches.

 Alternative database management systems to SQLite and PostgreSQL include MySQL,

MongoDB, Microsoft SQL Server, and Oracle Database. The choice of the DBMS

depends on specific requirements such as data structure, scalability, and data querying

needs.

2.4 Selection of Deployment Environment

For the deployment of the REST API, the Render.com platform was selected as the

deployment environment. Render.com is a reliable and scalable hosting platform that simplifies

the deployment process and provides infrastructure management.

Advantages of Render.com:

 Reliable and scalable hosting platform: Render.com provides a reliable infrastructure

for deploying web applications and offers scalability to handle varying levels of traffic.

 Simplified deployment process: Render.com streamlines the deployment process,

making it easier for developers to deploy their applications without worrying about

infrastructure management.

To facilitate the deployment, the application was containerized using Docker. Docker allows

for easy packaging of the application and its dependencies into a portable container. This

ensures consistency and portability across different environments.

Advantages of Docker:

16

 Easy application packaging and portability: Docker allows applications and their

dependencies to be bundled into containers, providing a consistent environment across

different systems.

 Consistency and reproducibility: Docker containers ensure that the deployed

application runs the same way across development, testing, and production

environments.

Alternative deployment environments include cloud platforms like AWS, Google

Cloud Platform (GCP), and Microsoft Azure, as well as other hosting services like Heroku and

DigitalOcean. Each alternative has its own features, pricing models, and scalability options

which should be considered in relation to the solution to be produced.

By leveraging Render.com and Docker, the deployment process was streamlined,

enabling easy scaling, monitoring, and management of the deployed API. This provided a

reliable hosting environment for seamless interaction with clients.

Additionally, the PostgreSQL database, hosted on the ElephantSQL platform, was integrated

with the deployed application. ElephantSQL is a managed PostgreSQL database hosting

service that offers scalability and efficient data storage and retrieval.

Overall, the combination of these methods ensures the successful development and

deployment of a REST API for store and item management.

17

3 SOFTWARE IMPLEMENTATION

3.1 Components and architectural

The design and architecture of the REST API for store and item management play a

crucial role in ensuring scalability, modularity, and maintainability. This section outlines the

key components and architectural decisions that will be employed in the development of the

API.

API Structure: The API will follow a resource-oriented design, where resources are

represented by URLs and accessed through HTTP methods. The following are some endpoints

that will be defined:

1. /stores: This endpoint will be used for creating stores and returning all stores. It will

support HTTP methods such as GET and POST for retrieving store information and

creating new stores respectively.

2. /stores/<int:store_id>: This endpoint will be used for deleting and returning specific

stores(using store id). It will support HTTP methods GET and DELETE.

3. /items: This endpoint will be used for creating items and returning all items. It will

support HTTP methods such as GET and POST for retrieving item information and

creating new items respectively.

4. /item/<int:item_id>: This endpoint will be used for deleting, updating and returning

specific items(using item id). It will support HTTP methods GET,DELETE and PUT.

Data Models: The data models will be designed to represent the entities involved in

the store and item management system. The key entities and their attributes will include:

Store:

 ID: A unique identifier for each store.

 Name: The name of the store.

Item:

 ID: A unique identifier for each item.

 Name: The name of the item.

 Price: The price of the item.

18

User: It will be used for authentication purposes.

Attributes:

 ID: A unique identifier for each user.

 Username

 Password

Tag: It will be used to address various item groups and associate with items and a store.

Attributes:

 ID: A unique identifier for each item.

 Name: The name of the item.

 Store ID: A foreign identifier which relates a tag to a store.

Items-Tags: A model for representing a many to many relationship between items and

tags

Attributes:

 ID: A unique identifier for each item.

 Item ID: A foreign identifier which points to the unique item id of an item model.

 Tag ID: A foreign identifier which points to the unique tag id of a tag model.

The relationships between entities will be established using appropriate mechanisms,

such as foreign keys or other associations. For example, an item will be associated with a

specific store through a foreign key relationship.

Authentication and Security: To ensure secure access to the API, token-based

authentication will be implemented using JSON Web Tokens (JWT). When a user successfully

logs in or registers, a JWT will be generated and returned as part of the response. Subsequent

API requests will require the inclusion of this token in the request headers to authenticate and

authorize access to protected endpoints.

Integration Considerations: If integration with a frontend application is required,

considerations such as implementing API authentication on the frontend, and ensuring secure

communication between the frontend and the API will be taken into account. These

considerations aim to facilitate seamless integration between the API and frontend components.

By adopting this design and architecture, the REST API for store and item management

will exhibit modularity, scalability, and maintainability. It will provide a solid foundation for

efficient store and item management, empowering businesses to effectively handle their

inventory and improve overall operations.

19

3.2 Implementation of the REST API

The implementation of the REST API using Flask for the store and item management

system involved several key components and technologies. The following steps outline the

implementation process:

1. Setup and Configuration:

o The Flask framework was utilized to develop the REST API. The Flask

application was initialized, and the necessary configurations were set up. This

included defining the application's title, version, and other OpenAPI-related

details.

2. Project Structure:

 A well-organized project structure was created to maintain modularity and

separation of concerns. The application code was structured into logical

components, such as instance, models, resources and migrations. This

structure allows for easy navigation and future scalability.

3. Database Configuration:

o The application utilized a relational database management system (RDBMS)

for data storage. During local testing, SQLite was used as the default database,

however, for the production environment, a PostgreSQL database was utilized

and configured along with access parameters which are loaded as environment

20

variables in the production environment. The PostgreSQL database was

provided by the ElephantSQL [13] platform, which offered a convenient and

scalable database hosting solution.

4. Database Migration:

 To ensure the smooth transition of data from the SQLite database to the

PostgreSQL database, database migration techniques were employed. The

Flask-Migrate extension was used to generate migration scripts that captured

the changes in the database schema. These migration scripts facilitated the

transfer of the previously defined tables and their data from the SQLite

database to the PostgreSQL database upon deployment.

5. Database Models:

o The application employed an object-relational mapping (ORM) library called

SQLAlchemy to define and interact with the database models. The models

module/package contained the model definitions for the store, item, tag, and

user entities. These models were mapped to their corresponding database

tables in both SQLite and PostgreSQL databases. The migration scripts

ensured that the database schemas in both databases remained consistent.

6. Schemas:

 Schemas were an integral part of the REST API implementation, responsible

for serializing and deserializing data between the API and the client. In this

project, the Marshmallow library was utilized to define and manage the

schemas. Schemas provide a structured representation of the data, enabling

validation and transformation of incoming and outgoing data.

 The project employed various schemas to handle different entities and data

operations. These schemas include:

a) ItemSchema: Used for dumping item data, including information such

as the item ID, name, price, associated store, and tags.

b) StoreSchema: Used for dumping store data, including information such

as the store ID, name, and associated items and tags.

c) TagSchema: Used for dumping tag data, including information such as

the tag ID, name, associated store, and items.

21

d) UserSchema: Used for loading and dumping user data, including

details like the user ID, username, and password (load-only).

e) UserRegisterSchema: A specialized schema for user registration,

extending the UserSchema to include additional fields such as the

user's email.

 These schemas ensure that the data exchanged through the API follows a

standardized format and meets the defined validation rules. They facilitate

consistent and reliable communication between the client and server

components of the system.

22

6. Blueprints and Resource Registration:

o The application utilized Flask-Smorest to organize the REST API endpoints.

Separate blueprints were created for different resources, including stores,

items, tags, and users. Each blueprint defined the routes and associated

controller functions for CRUD (Create, Read, Update, Delete) operations on

the corresponding resource. The blueprints were then registered with the API

instance to enable the handling of incoming HTTP requests.

23

7. Authentication and Authorization:

o Authentication and authorization functionalities were implemented using

Flask-JWT-Extended. The application used JSON Web Tokens (JWT) for user

authentication. JWT-based authentication was implemented using the

JWTManager instance, which provided various callback functions to handle

token-related events such as token expiration, token revocation, and token

validation. The callbacks were responsible for verifying the authenticity and

validity of the JWT tokens.

8. API Documentation:

o The API was documented using OpenAPI specifications. The Swagger UI

[11], hosted on a CDN, was integrated into the application to provide an

interactive interface for exploring the API endpoints and testing them. The

OpenAPI specifications were automatically generated based on the registered

24

blueprints and route definitions. The Swagger UI documentation can be

accessed on: REST API Swagger UI (store-rest-api-v2-project.onrender.com)

9. Development and Testing with Postman:

 During the development of the REST API, the Postman tool [12] was utilized

extensively for testing and simulating client interactions. Postman provides a

user-friendly interface for sending HTTP requests to API endpoints, allowing

developers to validate the functionality and behaviour of the API.

 By leveraging Postman, I was able to:

a) Send various types of requests (GET, POST, PUT, DELETE) to

different endpoints of the API.

b) Test the API's response to different scenarios and input data.

c) Validate the correctness of the API's output and error handling.

d) Simulate client behaviour by setting request headers, query parameters,

and request bodies.

 Postman played a crucial role in the iterative development and debugging

process, ensuring that the API endpoints were functioning as intended and

providing the expected responses.

The resulting implementation provided a robust and secure REST API for managing stores

and items. The Flask framework, along with Flask-Smorest and Flask-JWT-Extended

extensions, facilitated the development of a scalable and efficient API. The use of

PostgreSQL for the production environment, hosted on the ElephantSQL platform, ensured

reliable and performant data storage.

3.3 Deployment the REST API

The REST API was deployed to the Render.com platform, which facilitated the seamless

hosting and management of the application. The deployment process involved containerizing

the application using Docker, ensuring portability and easy deployment across different

environments.

To containerize the application, a Dockerfile was provided, which specified the necessary

dependencies, configurations, and instructions for building the container image. The

Dockerfile served as a blueprint for creating a self-contained environment for running the API.

https://store-rest-api-v2-project.onrender.com/swagger-ui

25

Dockerfile:

Render.com utilized the Dockerfile to automatically build and deploy the containerized

application. The Dockerfile contained a shell script which provided additional instructions to

be carried out whenever using the Dockerfile as the blueprint.

Shell script:

It simply instructs the platform to carry out necessary migrations changes if available and then

create the infrastructure.

This streamlined the deployment process and ensured consistency across different

deployments. The platform leveraged the container image to provision and manage the

necessary infrastructure to host the API.

Furthermore, the API relied on a PostgreSQL database to store and manage data. The

production environment utilized the ElephantSQL platform to host the PostgreSQL database.

During the deployment process, the previously defined tables in the SQLite database were

seamlessly migrated to the PostgreSQL database, preserving the existing data and maintaining

data integrity.

By leveraging Render.com and ElephantSQL, the deployment process was simplified, allowing

for easy scaling, monitoring, and management of the deployed API. This ensured a reliable and

robust hosting environment for the REST API, enabling seamless interaction with clients and

efficient data storage.

26

With the returned “access_token” we can access all protected endpoints, the “referesh_token”

is used to ensure that authentication flow is achieved so the user wont required reauthentication

until the current session ends by a logout.

27

Here a post request is sent along with a payload containing the name of the store to the store

endpoint, which creates a store and returns with a response body containing relevant

information.

28

Here a post request is sent along with a payload containing the name, price and store ID(of the

previously created store) to the items endpoint, which creates the item in the store and returns

with a response body containing relevant information.

29

Here is the response from the items endpoint when trying to access it after logging out. This

simply confirms that authentication flow ends when logout has been made.

30

CONCLUSION

In conclusion, the design and implementation of the REST API using Flask for store

and item management present a robust and practical solution for businesses operating in the e-

commerce industry. The API offers a wide range of essential functionalities, scalability,

security, and integration potential, effectively addressing the challenges associated with store

and item management, enhancing inventory control, and elevating the overall user experience.

The effectiveness and performance of the API have been thoroughly validated through

comprehensive testing and evaluation. The use of Postman during the implementation phase

allowed for rigorous endpoint testing and simulated client interactions, ensuring the API's

functionality and behavior met the intended requirements.

The deployment of the API to the Render.com platform further enhanced its

accessibility and availability. Leveraging Docker for containerization facilitated seamless

deployment across various environments, ensuring consistency and reliability. The integration

with the PostgreSQL database provided by ElephantSQL [13] for the production environment

ensured efficient data storage and management.

It is worth noting that the API's versatility and extensibility make it a suitable

foundation for future enhancements. Additional functionalities, such as a front-end for user

reviews or integration with third-party services, could further extend the capabilities of the API

and address evolving business needs.

By providing a well-designed and implemented REST API solution, this study

contributes to the field of store management systems. The API empowers businesses to

streamline their store operations, improve inventory control, and enhance overall operational

efficiency. This project also demonstrates the successful application of Python, Flask, Flask-

Smorest, Flask-JWT-Extended, and database technologies like SQLite and PostgreSQL in

developing a reliable and scalable REST API solution.

In conclusion, the designed and implemented REST API solution serves as a valuable

tool for businesses in the e-commerce industry, enabling efficient store and item management,

and paving the way for future advancements in store management systems.

31

REFERENCES

1. Shopify API reference documentation:

https://shopify.dev/docs/api

2. Python Documentation:

https://www.python.org/doc/

3. Flask documentation and user guide:

Flask Documentation (2.3.x) (palletsprojects.com)

4. IBM cloud:

What is a REST API? | IBM

5. Interacting With Web Services – Real Python:

https://realpython.com/api-integration-in-python/

6. Flask-JWT-Extended’s Documentation:

https://flask-jwt-extended.readthedocs.io/en/stable/

7. Flask-Smorest Documentation:

https://flask-smorest.readthedocs.io/en/latest/

8. WooCommerse REST API reference documentation:

https://woocommerce.github.io/woocommerce-rest-api-docs/ - introduction

9. Square API Reference:

https://developer.squareup.com/reference/square

10. HATEOAS – Wikipedia:

https://en.wikipedia.org/wiki/HATEOAS

11. Swagger-ui CDN and documentation by jsDelivrA:

https://www.jsdelivr.com/package/npm/swagger-ui-dist

12. Postman API Platform and User guide:

https://www.postman.com/home

13. ElephantSQL documentation:

https://www.elephantsql.com/docs/index.html

4. Render.com platform and documentation:

https://render.com/docs

https://shopify.dev/docs/api
https://www.python.org/doc/
https://flask.palletsprojects.com/en/2.3.x/
https://www.ibm.com/topics/rest-apis
https://realpython.com/api-integration-in-python/
https://flask-jwt-extended.readthedocs.io/en/stable/
https://flask-smorest.readthedocs.io/en/latest/
https://woocommerce.github.io/woocommerce-rest-api-docs/#introduction
https://developer.squareup.com/reference/square
https://en.wikipedia.org/wiki/HATEOAS
https://www.jsdelivr.com/package/npm/swagger-ui-dist
https://www.postman.com/home
https://www.elephantsql.com/docs/index.html
https://render.com/docs

32

ACKNOWLEDGMENT

I would like to express my heartfelt gratitude to all those who have contributed to the

successful completion of this thesis.

I am sincerely thankful to my supervisor, Miss Galyna for her guidance, support, and

valuable insights throughout the entire duration of this research. Their expertise in the field of

Computer Science and their dedication to my academic growth has been instrumental in

shaping this thesis.

I would like to extend my appreciation to the faculty members of the Computer Science

Department at Sumy State University. Their commitment to excellence in education and their

passion for imparting knowledge has played a significant role in my intellectual development

and the successful completion of this research project.

I am deeply indebted to the participants who willingly participated in the data collection

process. Their cooperation and willingness to share their experiences have provided valuable

insights and enriched the findings of this study.

I am grateful to my family and friends for their unwavering support, encouragement,

and belief in my abilities. Their constant motivation and understanding have been essential in

overcoming challenges and staying focused on this academic pursuit.

I would like to express my gratitude to Sumy State University for providing an

enriching academic environment and the necessary resources for conducting this research. The

opportunities for learning and growth that I have received at this institution have been

invaluable.

I would also like to acknowledge the contributions of the open-source community,

whose continuous efforts in developing and improving software tools and frameworks have

greatly facilitated the implementation and success of this Study. Specifically, I would like to

express my gratitude to the contributors of Python, Flask, Flask-Smorest, and Flask-JWT-

Extended, which formed the foundation of the development process.

In conclusion, I am deeply grateful to all individuals and institutions that have played a

part in this academic journey. Your support, guidance, and encouragement have been

invaluable, and I am truly honored to have had the opportunity to work under your mentorship

and support.

33

APPENDIX

The appendix section contains supplementary information and resources that

complement the main body of the thesis. These additional materials provide further details,

documentation, and supporting evidence for the design, implementation, and evaluation of the

REST API for store and item management.

Endpoint of live API: Store REST API endpoint (store-rest-api-v2-project.onrender.com)

GitHub repo for API: pRimeRly/store-rest-api-v2 (github.com)

Swagger UI for API: REST API Swagger UI (store-rest-api-v2-project.onrender.com)

Using the API endpoint and Postman tool for simulating client interactions, the API can be

interacted with, additionally, the Swagger UI of the API can be used for the same purpose.

API DOCUMENTATION:

https://store-rest-api-v2-project.onrender.com/
https://github.com/pRimeRly/store-rest-api-v2
https://store-rest-api-v2-project.onrender.com/swagger-ui

34

Code Snippets: This shows some endpoints defined during API Implementation.

Item resource:

from flask.views import MethodView

from flask_smorest import Blueprint, abort

from flask_jwt_extended import jwt_required, get_jwt

from sqlalchemy.exc import SQLAlchemyError, IntegrityError

from db import db

from models import ItemModel

from schemas import ItemSchema, ItemUpdateSchema

blp = Blueprint("items", __name__, description="Operations on items")

@blp.route("/item/<int:item_id>")

class Item(MethodView):

 @jwt_required()

 @blp.response(200, ItemSchema)

 def get(self, item_id):

 """Returns item from database using item id"""

 item = ItemModel.query.get_or_404(item_id)

 return item

 @jwt_required(fresh=True)

 def delete(self, item_id):

 """Deletes item from database using item id"""

 jwt = get_jwt()

 if not jwt.get("is_admin"):

 abort(401, message="Admin privilege required")

 item = ItemModel.query.get_or_404(item_id)

 db.session.delete(item)

 db.session.commit()

 return {"message": "Item deleted"}

 @jwt_required()

 @blp.arguments(ItemUpdateSchema)

 @blp.response(200, ItemSchema)

 def put(self, item_data, item_id):

 """Update item using the item id"""

 item = ItemModel.query.get(item_id)

35

 if item:

 item.price = item_data["price"]

 item.name = item_data["name"]

 else:

 try:

 item = ItemModel(id=item_id, **item_data)

 except IntegrityError:

 abort(400, message="An Item with that name already

exists.")

 db.session.add(item)

 db.session.commit()

 return item

@blp.route("/item")

class ItemList(MethodView):

 @blp.response(200, ItemSchema(many=True))

 def get(self):

 """Returns list of all items"""

 return ItemModel.query.all()

 @jwt_required()

 @blp.arguments(ItemSchema)

 @blp.response(201, ItemSchema)

 def post(self, item_data):

 """Create items in a store with store id"""

 item = ItemModel(**item_data)

 try:

 db.session.add(item)

 db.session.commit()

 except SQLAlchemyError:

 abort(500, message="An error occurred while inserting the

item.")

 return item

36

Store resource:

from flask.views import MethodView

from flask_smorest import Blueprint, abort

from db import db

from models import StoreModel

from schemas import StoreSchema

from sqlalchemy.exc import SQLAlchemyError, IntegrityError

from flask_jwt_extended import jwt_required

blp = Blueprint("stores", __name__, description="Operations on stores")

@blp.route("/store/<int:store_id>")

class Store(MethodView):

 @jwt_required()

 @blp.response(200, StoreSchema)

 def get(self, store_id):

 """returns store from database using store id"""

 store = StoreModel.query.get_or_404(store_id)

 return store

 @jwt_required()

 def delete(self, store_id):

 """deletes store from database using store id"""

 store = StoreModel.query.get_or_404(store_id)

 db.session.delete(store)

 db.session.commit()

 return {"message": "Store deleted"}

@blp.route("/store")

class StoreList(MethodView):

 @blp.response(200, StoreSchema(many=True))

 def get(self):

 """Returns list of stores"""

 return StoreModel.query.all()

 @jwt_required()

 @blp.arguments(StoreSchema)

 @blp.response(200, StoreSchema)

37

 def post(self, store_data):

 """Creates store"""

 store = StoreModel(**store_data)

 try:

 db.session.add(store)

 db.session.commit()

 except IntegrityError:

 abort(400, message="A store with that name already exists.")

 except SQLAlchemyError:

 abort(500, message="An error occurred while creating the

store.")

 return store

38

Database Models: The database Models used in the store and item management system,

providing an overview of the tables, their relationships, and the attributes associated with each

entity.

Item Models:

"""Model class (ItemModel) for the items table"""

from db import db

class ItemModel(db.Model):

 __tablename__ = "items"

 id = db.Column(db.Integer, primary_key=True)

 name = db.Column(db.String(80), unique=True, nullable=False)

 description = db.Column(db.String)

 price = db.Column(db.Float(precision=2), unique=False, nullable=False)

 store_id = db.Column(db.Integer, db.ForeignKey("stores.id"),

unique=False, nullable=False) # store can have multiple items

 store = db.relationship("StoreModel", back_populates="items") #

StoreModel object associated with item

 tags = db.relationship("TagModel", back_populates="items",

secondary="items_tags") # instructs sqlalchemy how to map tags to items

Store Model:

"""Model class (StoreModel) for the stores table"""

from db import db

class StoreModel(db.Model):

 __tablename__ = "stores"

 id = db.Column(db.Integer, primary_key=True)

 name = db.Column(db.String(80), unique=True, nullable=False)

 items = db.relationship("ItemModel", back_populates="store",

lazy="dynamic", cascade="all, delete")

 tags = db.relationship("TagModel", back_populates="store",

lazy="dynamic")

39

API Interaction:

40

41

Deployment Environment:

