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The change in the shape of the spectra of a quasi-2D semiconductor under the action of resonant 

irradiation of the frequency , which is determined by the condition 0 g gE E    , is considered. The 

studies showed three types of such a changes. They were analysed in the two cases: a) depending on  at fixed 

parameters of the quasi-2D semiconductor bands (effective masses mc, mh of electrons and holes in the plane 

of layers, overlap  integrals c, h) and b) vice versa, when the band parameters change at fixed . The 

decisive role of c, h in the manifestation of one or another of the three types of the spectrum shape change is 

indicated. 
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1. INTRODUCTION 
 

In nature, there are a number of so-called low-

dimensional structures or layered crystals that have 

pronounced anisotropic properties. Such structures are 

packs of mono-atomic planes (packets) whose atoms are 

interconnected by covalent or ionic-covalent bonds, 

whereas the connection between the packets is created 

by much weaker, namely van der Waals, bond. 

Therefore, sometimes such structures are called quasi-

two-dimensional (quasi-2D) structures. Among them, the 

most widespread are graphite, transition metal 

dichalcogenides (TMD) MX2 (M: Mo, Ta, Ti, W, Nb, Sn, 

Zr, Hf, V; X: S, Se, Te), compounds of A3B6-type (A: Ga, 

In; B S, Se, Te), and others. As an example, in Fig. 1 

packets S–Mo–S of the layered crystal MoS2 are shown. 

The structure of the well-known representative of the 

layered crystals of A3B6-type GaSe completely coincides 

with the structure of MoS2 crystals after replacing the 

layer of metal atoms M by a Ga–Ga double layer.  
 

 
 

Fig. 1 – MoS2  crystal cells 
 

Different types of bonds are the cause of  

pronounced  anisotropy concerning  physical 

characteristics of quasi-two-dimensional crystals, 

which anisotropy can be  widely varied by intercalation 

[1, 2], by external compression [3], etc. Therefore, such 

structures were (and remain) objects of intensive 

scientific researches and their practical use in 

nanoelectronics,  spintronics, and optoelectronics [4-6]; 

and especially, they are promising in solving the 

current scientific and technological problem – the 

creation of high-capacity electrical energy storage [7].  
 

 
 

Fig. 2 – Dispersion law of an electron in a quasi-2D crystal 
 

The interest in layered crystals renewed sharply 

after the discovery of graphene in 2004 [8]. Graphene is 

a exfoliated nanosheet of graphite. (A similar to it 

structure – graphdiyne – was synthesized in 2019 [9]). 

The first studies of graphene have showed extaordinary 

electrical and thermal conductivities, the possibility of 

many of its practical applications for high-speed 

electronic and optical devices, for hybrid materials 

based on graphene, for  energy generation and storage. 

Structure and chemical bonds of graphene are 

similar to those of TMD or A3B6 layered crystals. Long 

before the discovery of graphene, individual or few 

layers separated from TDM or from  layered crystals 

were obtained [10, 11]. 

In search of desired characteristics, intensive 

research has recently been focused on mono- and 

multilayer graphene or TMD-structures. Significant 

differences have been found in the band spectra of 

mono- and bi-layered compounds as compared to those 

of  bulk (quasi-2D) crystals. For example, bulk MoS2 is 

a semiconductor with an indirect band gap of 1.2 eV 

with negligible photoluminescence – becomes a direct 

band gap semiconductor with a band gap of 1.8 eV and 
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with a strong photoluminescence in the case of a 

individual monolayer [12, 13]. The band gap of 2.3 eV 

in tri-layer ε-GaSe becomes a band gap of 3.3 eV in 

monolayer ε-GaSe, while for quasi-2D-crystals it is 

1.91 eV. When passing through a certain critical 

number of layers, the effective mass of holes at point Г 

changes its sign from positive to negative. Successful 

practical application of the peculiar properties of 2D 

crystals or their cleaved fragments is possible only on 

the basis of thorough knowledge of their electronic 

states. This explains a significant number of, in 

particular, theoretical studies using various methods 

(in particular, DFT and its modifications) of such 

states. In particular, the peculiar properties of 

graphene as 2D structure described by the relativistic 

Dirac equation were discovered. It was found that the 

band structure in the vicinity of point K can have a 

conical shape – Dirac cones. At this point electrons are 

zero-mass particles, i.e., they become massless fermions 

instead of the usual quasiparticles in solids. Such a 

conclusion raises a number of questions [14]. First, how 

justified is the model of graphene as an infinite 2D 

crystal, bearing in mind that real 2D crystals are 

thermodynamically unstable [15]? Second, how justified 

is the application of Dirac's theory to the structure of 

graphene with its small nuclear charge (+6e), capable 

of causing significant relativistic effects [14]. However, 

the cone-shaped bands observed in graphene 

photoemission experiments can be described within the 

framework of conventional non-relativistic DFT 

calculations, rather than with the help of massless 

fermions according to the Dirac equation 

Given the importance of knowing the band spectrum 

and its properties for electronics, comprehensive studies of 

the spectrum, in particular, its response to external 

factors, are relevant.Below we will consider one of the 

mechanisms of band spectrum reconstruction in quasi-2D 

crystals. 

 

2. EFFECT OF AN ELECTROMAGNETIC WAVE 

ON AN ANISOTROPIC SEMICONDUCTOR 

WITH PARABOLIC ZONES 
 

Let us consider the absorption by a semiconductor of 

a monochromatic electromagnetic wave whose an electric 

field intensity, in general, has the following form:  
 

     trqiEe=trE 


exp, 0
 (1) 

 

where 𝑒 is the unit vector of light polarization, 𝑞⃗ is its 

wave vector, and  is its frequency 

Let the stationary states and wave functions of an 

ideal isotropic semiconductor be known: 
 

    rErH vcvcvc


,,,0

ˆ    (2) 

 

where 
 

 
c

g

kc m

kE
E
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22
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v

g

kv m

kE
E
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22
  . (4) 

Here (3), (4) are the dispersion laws of an electron 

in terms of the effective masses mc, mv  in conduction 

band and in valence band, respectively, referenced from 

the middle of the band gap Eg. 

The effect of electromagnetic irradiation of a 

semiconductor is described by the Hamiltonian 
 

   trqiEpe
mc

e
ipA
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 is the momentum operator,  
 

 
E
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 is the vector potential, and e, m are the charge of the 

electron and its mass, respectively. 

Let us present the final Hamiltonian 
 

 10
ˆˆˆ HHH 

  
 

in the representation of secondary quantization basing 

on the operator wave function 
 

     ˆ , exp expc v

kc kc kv kv
k

E t E t
r t a r i a r i  
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 (6) 

 

where )(
ckck

aa 
 , )(

vkkv aa 
 are creation operators (annihi-

lation) of an electron in the conduction  band and va-

lence band, respectively. Then 
 

 

 
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 (7) 

 

where the first two terms describe the electron and hole 

dispersion laws ( )(
hkhk

bb 
 ) the hole creation 

(annihilation) operator) with 
 

 
2 2

2 2

g

hk
h

E k
E

m
  ; (

hv mm  ).  

 

The third term in (7) describes the effect of electron 

and hole mixing by an electromagnetic wave: 
 

     rdrHr
hkckkk







   1
ˆ  (8) 

 

Thus, the Hamiltonian (7) is time-dependent. This 

dependence can be eliminated by unitary 

transformation [16] and time-independent zones can be 

obtained: 
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Equation (9) describes zones of quasiparticles of the 

electron-hole pair type with the reference point

2

gE



. 

 

3. THE EFFECT OF ELECTROMAGNETIC 

IRRADIATION OF A QUASI-2-DIMENSIONAL 

SEMICONDUCTOR 
 

In [16], changes in the electronic spectrum (9) 

caused by the resonant interaction were considered. 

The condition of such interaction is  
 

 gg EE  0   (10) 

 

Taking into account the uniqueness of the quasi-2D 

crystal, we will consider a similar problem for it. In 

fact, any quasi-2D crystal is three-dimensional. In the 

XOY planes of the isotropic layers with real filling of 

the zone, the electronic spectrum can be with 

satisfactory accuracy represented by a 2D parabolic law 

with effective mass mc, mv: 
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IIch
m
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 (11) 

 

where   
yxII kkk ,,


  is the 2D-quasi-momentum.  

Along the normal to the layers, with the increasing 

of filling of the zones, deviations from parabolicity in 

the dispersion law become quite noticeable. Then, in 

the strong coupling approximation, taking into account 

the electronic overlap between adjacent layers 

 1

ch
  

(v is the layer’s number), the longitudinal dispersion 

law takes the following form: 
 

     zchzch kkE cos1   (12) 

 

Thus, the width of the allowed zone is equal to 2c 

and 2h. In the case of a single zone model the 

transition of the Fermi level through such a value 

causes the Lifshitz transition, in which the closed 

isoenergy zone turns into an open one. 

The total dispersion law is the sum of (11) and (12). 

For example, Fig. 2 shows it for the conduction zone. As 

the zones are filled, the dispersion laws along the 

normal to the layers become noticeably different from 

the parabolic ones.  

Let us analyse a reconstructed spectrum of a quasi-

2D crystal caused by electromagnetic radiation. Here 

we can use (9) taking into account the following 

renormalised parameters in it: 
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where    c0
,     c1

. 

Let us consider the higher zone (9) taking into 

account such redefinitions. From the condition of the 
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and from the condition of the extremum 
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obtain the equation: 
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From (9), (10), it follows that there are possible the 

following extremum points:  

a)  0,0,0k


 which coincides with  a extremum 

point of the dispersion law of an non-irradiated 

 kc


  of semiconductor, i.e. electromagnetic 

irradiation does not change its form. 

b) 0zk  and yx kk ,  are thes solutions of the 

equation   
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After transformations this equation takes the fol-

lowing form: 
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c) 0 ух kk  and zk  is determined according to 

equation (10), which can be reduced to the 

form: 
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From the condition (5) and the equation (11), it 
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(In (13), there was assumed the parabolicity of the 
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zone in space  ухkk  over the entire Brillouin zone). 

Similarly, from equation (19) it follows that 0zk  

in the Brillouin zone is possible only when 
 

   
2 ( )c h c h

g g c h

c h c h

E E
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~~
minmax . Since the width of the allowed 

zones in space  
ух kk ,  is greater than that along zk , 

then maxmax

~
EE  . 

Depending on the proportions among 
hcch mm  ,,,

,there are the possible frequencies   of resonant 

electromagnetic irradiation at which minimuma of the 

zones are achived at  0,0,0k


, i.e. the shape of the 

spectra of the non-irradiated sample is changed. There 

are three specific ranges of change of  : 

1) 

ch
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mm 
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
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
: for  minmax

~
EE  . 

Here are the frequency Ω ranges (their geometric 

representation is given below) in which the shape of the 

electronic spectrum is changed: 
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Here are the frequency Ω ranges (their geometric 

representation is given below) in which the shape of the 

electronic spectrum is changed: 
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~
EE  . 

Here are the frequency  ranges (their geometric 

representation is given below) in which the shape of the 

electronic spectrum is changed: 
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~
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~
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~
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~
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x
k , 
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 zk,0,0 ,

 0,0,xk , 

 0,,0 yk  

 0,0,xk ,
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A similar analysis can be carried out for the lower 

zone in (9) and obtain similar conclusions to those 

obtained above. 

It should be noted once again that quasi-2D crystals 

are sharply anisotropic crystals, which is confirmed, in 

particular, by their mechanical characteristics [17, 18]. 

Table 1 shows the elastic constants along the normal to 

the layers (
33С ), in the layers (

11С ), and the degree of 

anisotropy 1133 /СС  for graphite and for some well-

known layered crystals such as GaS,  GaSe, InSe. 
 

Table 1 – Elastic constants of the quasi-2D crystals 
 

 C (graphite) GaS GaSe InSe 

11С , 1010 Pa 106 15.7 10.3 7.3 

33С , 1010 Pa 3.7 3.6 3.4 3.6 

3311 /CС  28.6 4.4 3.0 2.0 

 

Table 2 shows the pressure dependence of the 

elastic moduli of the same crystals at T = 300 K. 
 

Table 2 – Baric dependences of the quasi-2D crystal elastic 

modulus 
 

 C  (gra-

phite) 

GaS GaSe InSe 

,
1

P

C

C

kk

kk 


 

111Pa10 
 

11С  4 8 8 11 

33С  26 63 56 50 

1133 /CС  5.5 7.9 7.0 4.5 

 

Important conclusions can be drawn from these 

tables. From Table 1 it follows that: 

a) the elastic moduli 11С  in the plane of the layers 

of these crystals are significantly higher (30 times 

higher than those  for graphite and on average 3 times 
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higher for other crystals);  

b) the modulus 
33С

 
normal to the layers of these 

crystals are almost of the same values, while  the mod-

uli 
11С in the plane of the layers are different for 

different crystals. Thus, the ratio 
3311 /CС  determines 

the degree of anisotropy of the quasi-2D crystals. 

Table 2 shows that the baric dependences PСii  /|
 

of the elastic constants in the same quasi-2D crystals 

for 
33С  are much higher than those for 

11С .  This fact 

allows us to neglect the effect of pressure in the 

domains of ionic-covalent interaction (in the layers) in 

the zero approximation and consider the pressure  as a 

factor of the change of van der Waals gaps, and hence 

with a change in the overlap integral. Thus, the 

relations between 

hc

hc



 

 

and 

hc

ch

mm

mm 
, which 

determine the emergence of the cases 1-3, depend only 

on 
c  and 

h . 

Similar conclusions about the role of 
c  and 

h  in 

the  emergence of the cases 1-3 are hold good for the 

intercalation of layered crystals. There are a number of 

external factors that can significantly change of 
с , 

h

, in particular, intercalation. It should be noted that 

intercalation is a unique phenomenon of reversible 

insertion of foreign atoms into van der Waals gaps. 

Among the many studies of intercalation that remain 

relevant today [1, 19], we will turn to those that are 

interesting from the point of view of our consideration. 

In the 70s of the last century, interest in layered crys-

tals as materials with possible superconductivity based 

on the exciton mechanism was revived [20]. Among the 

studies of this phenomenon, the work [21] is particular-

ly important for us. In it superconductivity in 50 creat-

ed by the authors intercalated TMD TaS2 and NbSe2 

were studied. Organic and inorganic molecules were 

chosen as intercalant. In all the cases, the van der 

Waals gap increased to a different extent depending on 

the nature of the intercalant. Thus, during intercala-

tion of 22Н TaS  by octadecylamine, the gap value 

increased to 50 Å (in the pure 22Н TaS  the gap value 

is ~ 3 Å) 

Thus, intercalation by changing the geometrical 

dimensions of the van der Waals gaps leads to a change 

in c, h. It should be born in mind not only about the 

geometric manifestation of intercalation, but also about 

the nature of intercalated atoms, which themselves can 

change the  the van der Waals interaction 

 

4. CONCLUSION 
 

The obtained results indicate that by changing the 

resonant frequency  it is possible to achieve extrema 

of spectrum of the quasi-2D semiconductor beyond the 

point  0,0,0k


, namely, only at the points  zk,0,0  or 

 0,0,xk ,  0,,0 yk  and simultaneously at these points. 

The ranges in which such points may occur depend on 

the proptions among the parameters 
hc  , , 

ch mm , . In 

any case, the range of change of  where the extremum 

point  zk,0,0  occurs is much less than that in the case 

of   0,0,xk ,  0,,0 yk  

There is an alternative approach possible: with a 

fixed frequency  , the analogous changes in the 

shape of the spectrum can be achieved by changing the 

overlap integrals 
hc  ,  in the crystal by means to 

intercalation, axial or hydrostatic compression. 
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Електронний спектр квазі-2D напівпровідника в сильному електромагнітному полі 
 

Б.А. Лукіянець, Д.В. Матулка 
 

Національний університет "Львівська політехніка", вул. Бандери, 12, 79013 Львів, Україна 

 
Розглянуто зміну форми спектрів квазі-2D напівпровідника під дією резонансного опромінення з 

частотою , яка визначається умовою 0 g gE E    . Дослідження показали три типи таких змін. 

Їх проаналізовано у двох випадках: а) залежно від  при фіксованих параметрах зон квазі-2D напівп-

ровідника (ефективних мас mc, mh, електронів і дірок у площині шарів, інтегралів перекриття c, h) і 

б) навпаки, при зміні параметрів зон при фіксованих . Вказано на вирішальну роль c, h у прояві 

того чи іншого з трьох типів зміни форми спектра. 
 

Ключові слова: Квазі-2D напівпровідник, Електронний спектр, Резонансне електромагнітне опромі-

нення. 
 


