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The nanocomposite filtration membranes have emerged as potential water purification and separation 

technologies. However, reliable estimation of foulant rejection and permeate flux remains difficult due to the 

complicated interaction of many components. Traditional modeling techniques fail to capture the complex dynamics 

at work. In this paper, we provide a Refined Support Vector Machine (RSVM) strategy to solve this issue and increase 

the performance of nanocomposite filtration membranes. To normalize the features, the data are pre-processed using 

min-max normalization. Data features like foulant rejection rates, permeate flux values, membrane features, and 

experimental setup are displayed. Furthermore, the proposed RSVM to determine the best input factors for the 

effectiveness of each nanocomposite membrane. Due to the strong resilience of RSVM and the great generalization 

ability of the ML model, the obtained results demonstrated that the RSVM model's prediction efficiency (R2 = 0.995) 

outperformed the mathematical model in terms of prediction performance. To conduct training, validation and testing 

for this work, we employed statistical data including 764 samples of the input variables (five) and output variables 

(two). The RSVM approach provides a dependable and effective way to forecast membrane fouling and water 

filtration by predicting foulant rejection and permeate flux. 
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1. INTRODUCTION 
 

The thin film nanocomposite filtration membrane has 

been conducted during the past two decades for both 

industrial and domestic uses, with a focus on 

nanocomposite-filtered membranes. Both organic 

materials (polymers) and inorganic materials (ceramics) 

can be used to make membranes; polymeric materials 

have been studied due to their chemical stability, 

mechanical strength and flexibility. The term "permeate 

flux" defines the rate at which a fluid that has been 

filtered or treated permeates the membrane surface per 

unit area throughout a particular period. The capacity of 

the membrane to prevent or reject the passage of 

unwanted chemicals (foulants) between the permeate 

side and the feed solution is referred as foulant rejection. 

To extend the membrane's life and increase its function, 

nanocomposites are used in membrane technology [1]. 

Polymeric membrane performance, mainly ultra 

filtration (UF) membranes, the application of nano-

filtration such as TiO2, SiO2, GO, Ag, SWCNTs, and 

Cuinpolymer matrices has generated significant. 

Commercialization of membranes modified with 

nanocomposite was impeded by concerns for the long-term 

effects of exposure to nano-filtration leached from the 

polymer and a reluctance to change their current 

manufacturing lines [2], which include the combination of 

polymer, solvent and nano-filtration filler, without an 

accurate cost-benefit analysis. A design platform to speed up 

the development of innovative nanocomposite membranes is 

desired by membrane groups. When machine learning (ML) 

is used instead of conventional experimental and 

computational methods, the production time of UF 

nanocomposite membranes can be decreased [3-4]. 

 

2. RELATED WORK 
 

The article [5] suggested that commercial and in-

http://jnep.sumdu.edu.ua/index.php?lang=en
http://jnep.sumdu.edu.ua/index.php?lang=uk
https://jnep.sumdu.edu.ua/
https://int.sumdu.edu.ua/en
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.21272/jnep.16(3).03016
https://doi.org/10.21272/jnep.16(3).03016
mailto:praveenkhatkale@gmail.com


 

P.M. YAWALKAR, P. WILLIAM ET AL. J. NANO- ELECTRON. PHYS. 16, 03016 (2024) 

 

 

03016-2 

house polyether sulfone (PES) membranes, and thin TiO2 

nanoparticle mesoporous coatings in a range of pore sizes 

were produced utilizing a hydrothermal low temperature 

(HLT) method. After dip-coating titanic sol-gel particles 

onto membrane substrates, the other organic templates 

were separated using heat and Ultraviolet (UV) light 

treatments. To improve the coating's surface qualities 

and microstructure, dip-coating parameters were varied, 

such as the number of coating cycles, dipping and 

withdrawal velocities drying and holding times. The 

research [6] proposed these membranes to vast regions 

are visible, Graphene-based membranes have great 

potential for creative separation platforms because of 

their accurate molecular filtration of dissolved molecules 

and gas as well as their rapid water transfer. The ideal 

filtration membrane structure consists of a thin, dense, 

and defect-free serving as a practical filter; porous and 

more permeable support is mechanical strength. 

The study [7] suggested the wastewater from the 

production of cheese puts pressure on the environment. The 

use of the convolutional neural network (CNN)modelling in 

dynamic whey flux data studies has wider use, as it can be 

used to improve whey recovery efficiency by sensor tuning 

that in effect enables online flux monitoring. The author [8] 

proposed that membrane technologies have become 

increasingly prevalent in wastewater and water treatment 

operations. AI allows simpler system operation, including 

better planning, tracking, and real-time comprehensive 

understanding of resource loss, thus maximizing revenue 

capture and water quality satisfaction. The research [9] 

presented the difference between the output values of the 

model and the real values suggested by the study. To create 

materials with intrinsic composite features, membrane 

technology and polymeric materials have continued to 

concentrate on membrane modification. The article [10] 

proposed the ML approach can handle complex nonlinear 

interactions; it has been widely used in many fields, such as 

water chemistry. The possible use of ML in desalination 

research holds great potential in developing sustainable and 

effective desalination technologies. The author [11] 

suggested membrane technologies are becoming more useful 

and adaptable for sustainable development. An optimal 

framework for integrating ML techniques with particular 

application goals in membrane design and discovery is 

provided along with best practices. The study [12] developed 

membranes using nanotechnology that are gaining widely 

recognized as an eco-friendly technology for significant 

separation processes, capable of resolving the trade-off 

dispute seen in conventional methods for the separation of 

membranes. The main topics of this area include 

desalination, food, energy and biomedical fields, as well as 

air and water purification, as well as the latest 

developments in advanced nanocomposite membranes and 

their potential applications. The article [13] suggested that 

Green nanotechnology is the generation of safe technology to 

reduce potential risks for the health of humans and the 

environment both the manufacturing and consumption of 

nanotechnology products [14-16]. 

 

3. METHODOLOGY  
 

In this section, the proposed RSVM attempts to 

predict two essential parameters in membrane filtering 

processes: permeate flux (the rate of fluid flux through 

the membrane) and foulant rejection (the membrane's 

capacity to reject or remove undesired substances). 

 

3.1 Dataset 
 

The materials, architectures, and production methods 

for incorporating various nanomaterial types into TFN 

membranes are designed to raise the efficiency of the 

membranes exceeding the level achievable with 

conventional manufacturing. The statistical data 764 

samples were used in this study. Table 1 show the 

statistics data for five input and two output variables. 
 

Table 1 – Input and output variable of statistical data 
 

Variables Means± SD Range Description 

Input Variables 

Thin layer 

Thickness 
224 ±200.4 

31.75–

2250 
– 

Temperature 

post-

treatment(◦C) 

70.68±16.23 26–121 – 

Location of 

theNPs 
1.40 0–6 

"Organic solution," 

"PVA solution," 

"Aqueous solution," 

"Grafted on the 

TFC membrane," 

"Membrane 

support," "PSF 

support," and 

"Polymer support 

casting solution." 

was changed to 0, 

1,2,…,6respectively. 

Duration of 

post-

treatment 

(minutes) 

17.19±41.45 1–241 – 

Operation 

pressure 

(PSI) 

161.3±91.88 
14.51–

30.01 
– 

Output Variables 

Foulant 

rejection (%) 

54.60–

99.70 

92.95 ± 

8.45 
– 

Permeate 

flux 

0.38–

137.79 

35.24 ± 

23.60 
– 

 

Note: Pounds per square inch (PSI), polyvinyl alcohol 

(PVA), Price per Square Foot (PSF) 

 

Input Variables: 
 

1. Thin layer thickness: This refers to the thickness of 

the thin layer in the filtration process, which has an 

impact on foulant accumulation and permeates flow. 

2. Location of nanoparticles (NPs): The arrangement or 

spatial distribution of nanoparticles in the filter, which 

can have an impact on fouling and filtered efficiency. 

3. Temperature post-treatment: The temperature at 
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which membrane properties and fouling behavior are 

affected by post-treatment performed after filtration. 

4. Duration of post-treatment: The length of post-treatment, 

which impacts the membrane is cleaned or rejuvenated. 

5. Operation pressure: The pressure at which the 

filtration system operates, affecting the driving force 

for permeation and fouling dynamics. 

 

Output Variables: 
 

1. Permeate flux: The rate which the filtrate passes 

through the membrane per unit area and time is 

known as the filtration flux or permeation rate. 

2. Foulant rejection: The percent of retained foulants 

compared to the total amount in the feed shows the 

membrane rejects contaminants or foulants. 

 

3.2 Data Pre-processing Using Min-Max 

Normalization 
 

We use Min-Max Normalization for normalize the 

input variables to improve accuracy and speed up the 

learning phase. Normalization of the RSVM's input data 

is becoming more popular in the classification process of 

RSVMs. Translation of data into the range (or any other 

range) or transferring information onto the unit sphere is 

called normalization in ML. Standardization and 

normalization can be beneficial for some ML algorithms, 

particularly when Euclidean distance is used. 
 

 𝑊𝑛𝑜𝑟𝑚 =  
𝑀𝑚𝑎𝑥−𝑀𝑚𝑖𝑛

𝑊𝑚𝑎𝑥− 𝑊𝑚𝑖𝑛
× (𝑊 − 𝑀𝑚𝑖𝑛) + 𝑀𝑚𝑖𝑛 (1) 

 

When vector 𝑋 is used as the input or output, the 

normalized form of 𝑊𝑛𝑜𝑟𝑚 is the same. 𝑀𝑚𝑖𝑛 and 𝑀𝑚𝑎𝑥 are 

the input values, whereas 𝑊 𝑚𝑎𝑥 and 𝑊𝑚𝑖𝑛 are the min values 

and max values of the output vectors, − 1 and +1, respectively 

 

3.3 Refined Support Vector Machine (RSVM) 
 

The supervised ML algorithm that can be applied to 

regression and classification problems is a refined 

support vector machine (RSVM). RSVM can be used for a 

variety of tasks in the context of nanocomposite filtration 

membranes, including the calculation of membrane 

presentation, the classification of various membrane 

types, and the optimization of membrane properties. In 

general, ML uses kernel function implementation and 

high dimensional space simplification to perform data 

classification and reduce structural risk. 

The RSVM technique aims to offer precise and 

reliable estimations of permeate flux and foulant 

rejection. This accuracy is critical for maximizing 

membrane filtering operations, increasing system 

efficiency, and maintaining constant product quality. The 

RSVM was highly accurate in predicting the pore and 

fracture pressures if the coefficient of determining 

reporting responsibility (R2) was more than 0.995. 

It is a crucial component in membrane structure. With a 

few real-time surface drilling measurements, it is feasible 

to calculate the fracture pressure and estimate the pore 

pressure without the necessity for pressure trends. 

Using a dataset that includes observations of the input 

variables (thin layer thickness, NP location, temperature 

post-treatment, duration of post-treatment, operation 

pressure) and corresponding values of the output variables 

(permeate flux, foulant rejection), the RSVM approach 

involves creating an ML model. To create accurate 

predictions or estimations for unseen data, the model is 

trained to identify the underlying patterns and 

connections between the inputs and outputs. 
 

 𝑚𝑖𝑛𝜔,𝑎,𝑓𝐼 (𝜔, 𝑓) =  
1

2
𝜔2 + 𝛾 ∑ 𝑊𝑠

𝑛
𝑗=1  (2) 

Such that 
 

 𝑍𝑗(𝜔′𝑊𝑖 + 𝑎) + 𝜀𝑖 ≥ 1;  𝜀𝑖 ≥ 0;  𝑖 =  1, 2, … , 𝑛 (3) 
 

 𝑚𝑖𝑛𝜔,𝑎,𝑓𝐼 (𝜔, 𝑓) =  
1

2
‖𝜔2‖ +

1

2
𝛾 ∑ 𝑓𝑙

2𝑛
𝑙=1  (4) 

 

Here 𝐼,  𝑊𝑗, and 𝑍𝑗 are representative of the binary target, 

slack variable and the risk bound, respectively. Along with the 

bias, slack variable, weight matrix, error and regularization 

parameter are represented by the symbols 𝜇, 𝜏, 𝑎, 𝜀𝑖, 𝜑,  𝑊𝑗 and 

𝑍𝑗 in that order. This method of determining the Lagrangian 

function was used to solve the problem: 
 

 𝐾𝐿𝑆𝑆𝑉𝑀 ==  
1

2
‖𝜔2‖ +

1

2
𝛾 ∑ 𝑓𝑙

2𝑛
𝑙=1 − ∑ 𝛼𝑙

𝑀
𝑙=1  {(𝜔. 𝜃 (𝜔𝑙)) + 𝑎 + 𝑓𝑙 − 𝑧𝑙} (5) 

 

The Lagrangian multipliers are represented by 𝛼𝑘 in 

Eq. (3) Eq. (4) provides the derivatives of Eq. (3) for 

𝑎, 𝑓, 𝜔, and 𝛼𝑘 are used to determine the parameters. 
 

 
𝜕𝐾𝐿𝑆𝑆𝑉𝑀 

𝜕𝜔
=

𝜕𝐾𝐿𝑆𝑆𝑉𝑀 

𝜕𝑎
=

𝜕𝐾𝐿𝑆𝑆𝑉𝑀 

𝜕𝑓𝑙
=  

𝜕𝐾𝐿𝑆𝑆𝑉𝑀 

𝜕𝛼𝑙
= 0 (6) 

 

 𝜔 =  ∑ 𝛼𝑙
𝑀
𝑙=1 ∅(𝑤𝑙) (7) 

 

 ∑ 𝛼𝑙
𝑀
𝑙=1 = 0 (8) 

 

 𝛼𝑙 = 𝛾𝑓𝑙𝑙 = 1, … , 𝑀 (9) 
 

 (𝜔. ∅(𝑤𝑙)) + 𝑎 + 𝑓𝑙 − 𝑧𝑙 = 0 𝑙 = 1, … 𝑀 (10) 
 

 [
0

𝐽𝑀

𝐽𝑀
𝑆

𝛺 + 𝛾−1/𝑀
] [

𝑎
𝛼

] =  [
0
𝑄

] (11) 

 

Using the equations mentioned above, the definition 

of a linear system as follows: 
 

 𝛺𝑠𝑒 =  ∅ (𝑤𝑠)∅(𝑤𝑒) = 𝐿(𝑤𝑠 , 𝑤𝑒) (12) 
 

In several domains, such as water treatment, 

wastewater management, membrane filtered process, the 

application of RSVM for measuring penetrates flux and 

foulant rejection is important. By reducing energy 

consumption and maintenance needs, precise estimation 

of these parameters can enhance the performance of 

systems for filtration, increase process efficiency and 

reduce operating expenses. In conclusion, an RSVM 

technique was developed to predict foulant rejection and 

permeate flow in a filtered or separation system based on 

two output variables and five input variables. 
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4. RESULT AND DISCUSSION 
 

4.1 Statistical Analysis 
 

The data indicates that the polyamide layer (PA) is the 

primary polymer utilized in the production of TFN. An 

attribute of nanocomposite membranes, which consist of 

two or more polymers which is produced one or more 

support layers that are porous is a thin polymer barrier 

layer. TFN fabrication has the use of major polymers. One 

important feature of membrane construction that will 

affect TFN economics is the ability to coat the porous sub-

layer with a thick, ultrathin layer of material specialized 

to nanoparticles using a variety of ways. The existing focus 

on membrane research must be on developing with 

creating efficient nanocomposite membranes that have 

high solute rejection, improved water flux, improved 

physicochemical integrity, and small surface fouling. 

The PIP solution and trimethyl chloride solution react 

at a slow rate. An acid acceptor with a higher 

concentration value and acyl halide is required for the 

polyamide-increased activity layer. However, the 

integrated acid acceptor in MPD-based membranes is the 

high tertiary amine focused. The trend shows that the 

two common reactive monomers are increasing. Table 2 

shows the evaluation of TFN membrane performance. 
 

Table 2 – TFN membrane performance 
 

Name No  of membranes 

Water 62 

Na2SO4 55 

MgCl2 30 

MgSO4 46 

NaCl 111 

 

4.1.1. Evaluation of TFN Membrane Performance 
 

In spite of being widely used in separation methods, 

polymeric membranes, the TFN membrane's performance 

has been restricted by the compatibility of their 

permeability and selectivity. Robeson's upper bound can be 

used to show this trade-off in gas separation applications. 

They investigate whether this upper bound idea can also 

apply to water separation in this study, in addition to 

restricted gas separation membranes. Desalination and 

water purification are two uses for TFN membranes, a type 

of membrane technology. To confirm laboratory-scale results 

and evaluate real-world performance, pilot- or field-scale 

testing is frequently required. In general, more permeable 

membranes reflect an increase in Na2SO4 and a decrease in 

MgCl2 and MgSO4 separation factor. Fig. 1 (a) and (b) shows 

a scatter plot of the water permeance of PA nanocomposite 

membranes in TFN with and without nanoparticles against 

the separation factors of MgCl2 (1/Sa), and Na2SO4 (1/Sa). 

 

 
 

(a) 
 

 
 

(b) 
 

Fig. 1 – Water penetration scatter graph a) MgCl2, b) Na2SO4 

 

4.2 Correlations of Input Variables 
 

Evaluating the connection between each set of 

variables is essential for machine learning models since 

high correlation coefficients between RSVM models' input 

parameters could result in excessive fitting. Table 3 

shows the RSVM models permeate flux input variables 

correlation coefficients. Because of the extremely low 

correlation coefficient values (less than 0.6), the 

suggested RSVM models' inputs haves no bond. 
 

Table 3 – Input variables for correlation coefficients in the 

RSVM model for permeate flux 
 

 

Opera-

tion 

pressure 

Thickness 

of thin 

layer 

NPs 

location 

Temperature 

post-

treatment 

Duration 

of post-

treatment 

Operation 

pressure 
1.00     

Thin layer 

thickness 
0.33 1.00    

Location of 

the NPs 
– 0.39 – 0.03 1.00   

Temperature 

post-

treatment 

0.50 0.06 –0.12 1.00  

Duration of 

post-

treatment 

0.02 0.17 0.06 – 0.10 1.00 
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The trimethyl chloride (TMC in n-hexane) organic 

phase concentration, rejection, NP position, operation 

pressure, particle concentration, temperature, duration, 

contact angle, and thin layer thickness, were chosen as 

the eight variables of the RSVM models to estimate 

foulant rejection and permeate flux. 

 

5. CONCLUSION 
 

This study utilizes ML for nanocomposite filtration 

membranes, to calculate foulant rejection and permeates 

flux. Through an extensive study of various input 

variables including thin layer thickness, post-treatment 

duration, operation pressure, NP location and post-

treatment temperature the study effectively utilized 

Refined Support Vector Machine (RSVM) models to 

accurately estimate foulant rejection and permeate flux. 

After that, the RSVM models' initial weights were 

modified to increase R2 and reduce MSE. The results 

demonstrated the efficiency of the RSVM model as a 

high-accuracy, general-purpose method for predicting 

permeate flow and foulant rejection using training, 

validation, test and unseen data. Without performing 

expensive and time-consuming real experiments, the 

suggested approach can be utilized to determine 

permeate flow and foulant rejection as well as takes into 

consideration the effects on nanocomposite filtration 

membranes of each experimental condition. 
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Нанокомпозитні фільтраційні мембрани з’явилися як потенційні технології очищення та розділення води. 

Однак надійна оцінка відторгнення забруднюючих речовин і потоку пермеату залишається важкою через складну 

взаємодію багатьох компонентів. Традиційні методи моделювання не можуть повністю проконтрольювати складну 

динаміку в роботі. У цій статті запропонована стратегія удосконаленої опорної векторної машини (RSVM) для 

вирішення цієї проблеми та підвищення продуктивності нанокомпозитних фільтраційних мембран. Для 

нормалізації функцій дані попередньо обробляються за допомогою мінімально-максимальної нормалізації. 

Відображаються характеристики даних: рівень відторгнення забруднюючих речовин, значення потоку пермеату, 

характеристики мембрани та експериментальна установка. Крім того, запропонований RSVM для визначення 

найкращих вхідних факторів для ефективності кожної нанокомпозитної мембрани. Завдяки високій стійкості 

RSVM і великій здатності моделі ML до узагальнення, отримані результати продемонстрували, що ефективність 

прогнозування моделі RSVM (R2 = 0,995) перевершує математичну модель з точки зору ефективності 

прогнозування. Для проведення навчання, перевірки та тестування для цієї роботи були використані статистичні 

дані, включаючи 764 зразки вхідних змінних (п’ять) і вихідних змінних (дві). Підхід RSVM забезпечує надійний і 

ефективний спосіб прогнозування забруднення нанокомпозитної мембрани та фільтрації води шляхом 

прогнозування відторгнення забруднюючих речовин і флюсу пермеату. 
 

Kлючові слова: Тонкоплівковий нанокомпозит (TFN), Машинне навчання, Пермеатний потік, Відмова 

від забруднень, Вдосконалена опорна векторна машина (RSVM). 
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