

MINISTRY OF EDUCATION AND SCIENCE OF UKRAINE

SUMY STATE UNIVERSITY

FACULTY OF ELECTRONICS AND INFORMATION TECHNOLOGY

COMPUTER SCIENCE DEPARTMENT

 "Approved for defense."

Acting Head of the Department

Igor SHELEHOV

(signature)

GRADUATION THESIS

for obtaining the educational degree of Bachelor

in the specialty 122 - Computer Science,

educational-professional program "Informatics"

on the topic: " Optimizing Neural Networks For Parameter Efficiency"

by the student of group IN-05AH, UDE VICTOR SOMUADINA.

The Bachelor Graduation Thesis contains the results of original research. The use of ideas,

results, and texts of other authors is properly referenced to the respective sources.

 UDE VICTOR SOMUADINA

(signature)

Supervisor

Doctor of science, professor KOLESNIKOV VALERII

 (signature)

 Sumy – 2024

2

SUMY STATE UNIVERSITY

FACULTY OF ELECTRONICS AND INFORMATION TECHNOLOGY

 COMPUTER SCIENCE DEPARTMENT

 «Approved»

Acting Head of the Department

 Igor SHELEHOV

(signature)

TASK FOR THE GRADUATION THESIS

to obtain the educational degree of Bachelor

in the specialty 122 - Computer Science,

educational-professional program "Informatics"

by the student of group IN-05AH, UDE VICTOR SOMUADINA.

1. Topic of the Bachelor Graduation Thesis: " Optimizing Neural Networks For Parameter Efficiency"

аpproved by the order of SumDU on ____________________

2. The deadline for the submission of the Bachelor Graduation Thesis_______________.

3. Input data for the qualification work

4. Table of Contents for the Explanatory Memorandum (List of questions to be addressed)

1) Introduction. 2) Literary Review. 3) Optimization Algorithm 4) Proposed Methodology.

5. List of graphic materials (with specific mention of mandatory drawings)

6. Project consultants (with the corresponding sections of the project they are associated with).

Section Consultant

Signature, date

The assignment has been

issued

The assignment has been

accepted

7. Date of assignment issuance «____» ________________ 20 ___

The assignment has been

accepted for execution

 Supervisor

 (signature) (signature)

Calendar Plan

№ Titles of the stages of thе Bachelor Graduation Thesis Deadline Note

1 Introduction

2 Literary Review

3 Optimization Algorithm

4 Proposed Methodology

5 Bachelor Graduation Thesis Formatting

Student Supervisor
 (signature) (signature)

3

ABSTRACT

Note: 33 рages, 6 figures, 2 tables, 23 references, 1 app.

Justification of the relevance of the work's theme - Modern neural networks are

highly over-parameterized. And what does it mean by this? Simply put, It means that a

model has more parameters that seemingly exceed the dataset for training. Some Pruning

techniques have the capability to remove a significant fraction of network parameters

with little loss in accuracy. Recent methods based on dynamic reallocation of non-zero

parameters have emerged allowing direct training of sparse networks such as Stochastic

gradient descent (SGD), AdaDelta, AdaMax and Adabelief. We will be using models that

require shorter training times and lower hardware requirements and have removed the

hyperparameters to observe that the optimiser works with various models

Object of study: Process of Optimizing Neural Networks For Parameter Efficiency

Objective of study: The aim of this research is to provide an in-depth

understanding of the modern neural networks, its role in various organizations, and its

impact on operational efficiency information systems.

Research methods: Comparative analysis, experimental research, literature

reviews, deductive analysis.

Results: An algorithm for optimizing the correspondence of the neural network

model to the training data was proposed. The performance criteria of the neural network

in the training and validation set are defined. The algorithm is implemented in software,

which provides a better understanding of the step-by-step process of learning the model

and implementing the optimization algorithm.

NEURAL NETWORK, TRAINING SET, VALIDATION SET, VALIDATION LOSS,

TRAINING LOSS

4

CONTENTS

ABSTRACT .. 4

INTRODUCTION ... 6

1 LITERATURE REVIEW ... 8

1.1 Analysis of the current state of the subject area 8

1.2 Review of known solutions .. 9

1.3 System requirements .. 10

2 SELECTION OF PROBLEM SOLVING METHODS 13

2.1 Selection of programming languages .. 13

2.2 Selection a framework for implementation 13

2.3 Selection of DBMS .. 14

2.4 Selection of Deployment Environment 14

3 SOFTWARE IMPLEMENTATION... 16

3.1 Components and architectural .. 16

3.2 Implementation of the REST API ... 18

3.3 Deployment the REST API .. 23

CONCLUSION .. 30

REFERENCES .. 31

ACKNOWLEDGMENT .. 32

APPENDIX ... 33

5

INTRODUCTION

Justification of the relevance of the work's theme - Modern neural networks are

highly over-parameterized. And what does it mean by this? Simply put, It means that a

model has more parameters that seemingly exceed the dataset for training. Some Pruning

techniques have the capability to remove a significant fraction of network parameters

with little loss in accuracy. Recent methods based on dynamic reallocation of non-zero

parameters have emerged allowing direct training of sparse networks such as Stochastic

gradient descent (SGD), AdaDelta, AdaMax and Adabelief. We will be using models that

require shorter training times and lower hardware requirements and have removed the

hyperparameters to observe that the optimiser works with various models

Object of study: Process of Optimizing Neural Networks For Parameter Efficiency

Subject of study. The main subject of this study is methodological aspects of

neural network optimization.

Novelty. An algorithm for optimizing the correspondence of the neural network

model to the training data was proposed. The performance criteria of the neural network

in the training and validation set are defined. The algorithm is implemented in software,

which provides a better understanding of the step-by-step process of learning the model

and implementing the optimization algorithm.

Structure. This work consists of an introduction, a literary review, an optimization

algorithm, a proposed methodology, conclusions, a list of used sources, and appendices.

.

6

1 LITERARY REVIEW

Neural Network can be referred to as a computational model which is inspired by

the structure and functioning of the human brain. The model is designed to process

information by learning from examples and recognising patterns in data, particularly in

complex and high-dimensional datasets, just in a similar pattern to the human brain.

Recent findings suggest that backpropagation is related to the synaptic updating method

of the human brain bringing in the possibility for insight into understanding more of the

exact learning mechanism in the cortex. However, it remains far from fully understanding

the human brain's learning mechanics. However, these networks are widely used in

different fields such as natural language processing, computer vision and speech

recognition.

Figure 1.1 – Biological Neuron and Artificial Neuron

There are different types of neural networks which are popularly used today. Such

as;

Multilayered Perceptrons(MLPs), Recurrent Neural Networks(RNN) and

Convolutional Neural Networks (CNN).

1.1 Multilayered Perceptrons (MLPs)

MLPs go like the name states, a neural network with multiple and fully connected

layers its layers are deeply connected and usually consist of the Input layer, the Hidden

layer and the Output layer. The input layer consists of neurons that receive the initial

7

input data and is determined by the dimensionality of the input of data whereas the hidden

layer is made up of layers of neurons which are in between the input and output layer.

Each neuron in the hidden layer receives input from the neurons in the previous layer(the

input layer or possibly another hidden layer) and produces output that is passed to the

next layer and the output layer consists of the neurons that produce the final output for

the neural network and the output number depends solely on the nature of the tasks. MLPs

use a Backpropagation algorithm for training the model which increases the output by

reducing the error in the predicted output and actual output.

Figure 1.2 – Multilayered Perceptron

1.2 Recurrent Neural Networks

Recurrent Neural Networks are the neural network that allows previous outputs to

be used as inputs and handle sequential data while having hidden states, While traditional

deep neural networks assume the inputs and the outputs are independent of each other,

unlike the MLPs which process data in a single pass. They are distinguished by their

memory as they take information from prior inputs to influence the current input and

output. RNNs share parameters across each layer of the network and have different

weights across each node, recurrent neural networks share the same weight parameter

within each layer of the network. It also uses the BackPropagation through time (BPTT)

8

algorithm to determine the gradients, which is slightly different from traditional

backpropagation as it is specific to sequence data. They are usually used in Natural

language processing.

Figure 1.3 – Recurrent Neural Network

1.3 Convolutional Neural Networks

(CNNs) are specialized types of neural networks that are designed mainly for

object recognition, Convolutional neural networks are distinguished from other neural

networks by their superior performance including in image classification and detection.

It is used widely for vision tasks to extract features from visual data. Convolutional neural

networks are distinguished into convolutional layer, pooling layer and fully-connected

layer. The Convolutional layer is the core of the CNNs where the majority of computation

occurs and it requires a few components which are the input data, filter and a feature map.

Another convolution layer can follow the initial convolution layer. when this happens the

structure of the CNN can become hierarchical as the later layers. Ultimately the

convolutional layer converts the image into numerical values. The pooling layer is known

as downsampling and reducing the number of parameters in the input. Fully connected

layers are fully connected to each node in the output layer which connects directly to a

node in the previous layer.

9

Figure 1.4 – A-CNN-sequence-to-classify-handwritten-digits

We will be talking about the convolution neural network in this context which was

invented by researchers to improve image recognition technology. The model is trained

to recognize and familiarize itself with patterns in visual objects and images to identify

the shapes of certain objects or objects in an image. When training a convolutional model

in the neural network a dataset of the image is required, once it is trained it can identify

different objects and specific or identify the objects in images.

 In Neural networks, they are dense and Sparse neural networks. A dense neural

network is a type of neural network that uses multiple players of neurons to process data.

Each neuron is given a layer which is deeply connected to the previous layer of neurons.

 The difference between a sparse and dense neural network is based on the number

of connections which each neuron has in the network. Sparse network, every neuron in

the network is connected to a few neurons unlike in a dense network, in which each

neuron is deeply connected to many other neurons around it which means the sparse has

fewer connections than the dense network proving there is a going to be less performance

and efficiency in carrying out a task especially ones required to be processed in a large

amount of data. That’s the main advantage of using a dense neural network because it

can process more complex tasks due to its deep connections with each and every neuron.

10

 In a neural network, the major components are the input layer, hidden layers, and

the output layers. The process starts with the inputs which are received through the input

layer, they are then processed and sent through the hidden layers and finally to the output

layers. The hidden layers are important because they store information in the neurons

until a sufficient amount of information is stored to be processed by the output layer

which gives the trainer the prediction.

 The main goal and objective of any deep neural network algorithm is to predict

outputs. closer to the actual outputs. Optimization algorithms serve an important role in

the propagation of the neural network while training. It speeds up the training process

and finds the optimal parameters for a neural network. It helps to reduce the cost function,

which is mostly based on the prediction error. When the Optimization algorithm executes,

it solves every possibility iteratively until it reaches its peak satisfactory, which helps the

neural network during the training process.

 In training a neural network, one of the optimizing algorithms in the neural network

used to minimize some function by iteratively moving in the direction of the steepest

descent Is Gradient decent. It is one of the most basic and popular Optimization

algorithms.

Table 1.1 – Optimization Algorithms

Optimization

Algorithms
Pros Cons References

Adaptive

Gradient

Works perfectly on data

with sparse features

Genealiz and converges

to sharp minima

2011

AdaMax Capable of adjusting the

learning rate based on data

characteristics

Likely to overfit very

fast

2015

Nadam Uses decaying step size

and hyperparameters to

improve the performance

Generalized worse,

converges to sharp

minima

2016

EAdam Smaller Stepsize Computationally heavy 2020

Adaptative Delta Keeping the learning rate

optimally high

Accumulation of the

squared gradients

2012

RMSProp Works well on data with

sparse features

Generalies worse,

Converges to minima

2012

11

Continue of tabl.1.1

Optimization

Algorithms
Pros Cons References

EVGO Requires fewer

parameters for tuning

Generalises worse and

converges to sharp

minima

2020

Adaptative

Momentum

Converges faster Generalises poorly 2015

LAMB Fewer Parameters for

tuning, faster computation

Generalises worse,

converges to sharp

minima

2020

There are kinds of gradient Optimization algorithms such as Vanilla gradient

descent, Stochastic Gradient Descent (SGD) and Mini-batch SGD. According to research.

The list of different types of Optimization algorithms in chronological order with the

advantages and disadvantages depending on the data set and the machine learning

models.

In recent years Deep neural Networks have succeeded in a wide range of

application domains ranging from computer vision to machine translations to automatic

speech recognition which stems from their ability to learn complex transformations by

data example while achieving superior generalisation performance. Though they

generalise well, deep neural networks learn more efficiently when they are highly over-

parametrized (Zhang et al, 2016)More evidence proves the need for overparameterization

to the geometry of the high-dimension lost landscapes (Dauphin et al., 2014;

Choromanska et al., 2014; Goodfellow et al., 2014; Im et al., 2016; Wu et al., 2017; Liao

& Poggio, 2017; Cooper, 2018; Novak et al., 2018).

Multiple techniques can compress large amounts of trained models, like weight

precision reduction and pruning. These methods are highly effective in reducing the size

of the network parameter with little degradation in accuracy they usually operate on pre-

trained models or require the full overparameterized model to be stored and updated

during a certain stage in training.

Deep neural networks are standard tools for solving computer vision problems.

Deep neural networks are mostly used for image classification, and natural language

12

processing and rarely for audio recognition. Computer vision and image recognition have

revolutionized and propelled advancement in fields such as healthcare, agriculture, and

banking. There are open-source datasets for image classification such as CIFAR-100,

ImageNet and MNIST online.

 Deep learning is important in the development of artificial intelligence because it

helps machines learn in a similar way that humans do. It also allows machines to learn

from their experiences so that machines can automatically adapt and learn new pieces of

information on their own without much human intervention. In a deep neural network,

there are various Optimisers, most of which use stochastic descent algorithms for better

accuracy.

1.4 Task definition

The aim of this research is to provide an in-depth understanding of the modern

neural networks, its role in various organizations, and its impact on operational efficiency

information systems. Here are some tasks in this process:

1. Create training set and validation set.

2. Annalise optimization algorithms of neural network’s parameters

3. Propose an algorithm for optimizing the correspondence of the neural network

model to the training data.

4. Define the performance criteria of the neural network in the training and

validation set.

5. Implement the algorithm in software

13

2 OPTIMIZATION ALGORITHMS

Optimization in neural networks plays a very important role in the training of the

training process. It is very crucial for the efficient performance of the neural network

model and to give optimum performance in solving a task. As aforementioned one of the

most common methods for Optimization methods is gradient descent. It is always

repeatedly adjusting the network parameter to improve performance.

In training a neural network, it is required to set the parameters in a way that there

are underlying models that help the model perform and achieve peak performance with

the tasks.

While training models loss functions are required to be defined to be able to

evaluate the network performance, A loss function is referred to as the error function

which is very important in model training that quantifies the difference between the

predicted outputs of a model and the actual targeted output. During training, a learning

algorithm such as a backpropagation algorithm uses the gradient descent of the loss

function to adjust these parameters and minimize loss, therefore improving the model’s

performance on the dataset. Recent studies have proposed many Optimization algorithms

and each has its advantages and disadvantages. We will briefly talk about the current

Optimisers used in Optimization.

2.1 Stochastic Gradient-Descent

In training neural network models different methods are applied to complete

various tasks. The most common approach used in training models is gradient descent.

The primary goal of gradient descent is to identify model parameters that provide the

maximum accuracy on the training and test datasets. SGD has been successfully applied

to large-scale and sparse machine-learning problems often encountered, by repeating this

process over and over again, the network will learn the weights needed to produce the

optimal output for a given output.

SGD has been around for a while and has been used commonly in Optimization

and has several advantages such as; It is very easily implemented in the training of a

model and it produces high-quality results, second it is very easy to implement while

14

using large datasets because it is efficient in computation, third In traditional gradient

descent algorithms, SGD is less likely to get stuck because it updates the parameters using

a few das point at a data making it more likely to find the global minimum. One of the

main disadvantages of SGD is that it requires a lot large number of iterations to learn the

optimal set of parameters, the performance of this method can degrade when presented

with large complex datasets. There is a higher computation burden on the Optimization

algorithm when training models when we don’t have more data points. There are some

situations where SGD can be slow in situations where the gradient is small, this is because

of the update rule in the algorithms which only depends on the gradients at each iteration.

The most commonly used algorithm in the SGD

𝜃 = 𝜃 − 𝜂∇
𝜃

𝐽(𝜃; 𝑥(𝑖); 𝑦(𝑖)

Where;

θ(Theta): is the parameter we are trying to optimize

η(Eta): Is the learning rate. It determines the size of the jump

∇θJ(θ;x(i);y(i)): This is the gradient of a loss function calculated with the parameter

θ

∇: tells the direction of the steep ascent of the loss function

J(θ;x(i);y(i)): Represents the cost of the model prediction where x(i) is the input

data and y(i) is the corresponding target value.

This formula performs a single update for the SGD parameter using the information

from a training example. The formula stated that we update the parameter vector by

subtracting the scale version of the gradient in the negative direction.

And the most referred-to SGD algorithm ;

for epoch in range(np_epochs):

 np. random.shuffle(data) # Shuffle data for each epoch

 for example in data:

 params_grad = evaluate_gradient(loss_function, example, params)

 params = {key: value - learning_rate * params_grad[key] for key, value in

params.items()}

15

2.2 AdaGrad

AdaGrad is short for adaptative gradient, it signifies that the learning rates are

adjusted or adapted over time based on the previous gradients.

The learning rate is adapted component-wise to the parameters by incorporating

knowledge of past observations. It performs larger updates(High learning rates) for those

parameters that are related to infrequent features and smaller updates (Low learning

rates)for frequent ones. It performs smaller updates as a result, it is well-suited when

dealing with sparse data.

AdaGrad deals with the aforementioned problems by independently adaption the

learning rate for each weight component. If the gradient corresponding to a certain weight

vector component is large, then the respective learning rate will be small. During weight

update, instead of using a normal learning rate, AdaGrad scales it by dividing learning

rate by the square root of the accumulated gradients. One of the benefits of using Adagrad

is that the learning rates change with each training parameter and it does not need manual

tuning for learning rate. As for the disadvantages; the learning rate is always decreasing

which results in slow training and it is computationally expensive to calculate

The AdaGrad Formulation

𝜔𝑡 = 𝜔𝑡−1 − 𝜂
𝜕𝐿

𝜕𝜔(𝑡−1)

Where:

W(t): Value of w at current iteration,

W(t-1): Value of the value at the previous iteration

η(Eta): This is the learning rate, A small positive value that controls the magnitude

of the update

∂L/∂_(ω(t-1)): This represents the partial derivative of a loss function with respect

to the previous time step.

AdaGrad Algorithm:

16

 # Update parameters with AdaGrad

 for i, (param, grad) in enumerate(zip(params, gradients)):

 historical_grad_sum[i] += grad**2

 adjusted_learning_rate = learning_rate / (eps +

np.sqrt(historical_grad_sum[i]))

 param -= adjusted_learning_rate * grad

 return params

2.3 Adaptative Momentum

Adaptative momentum also known as ADAM is an algorithm developed by

DR.Hinton at the University of Toronto. It was developed initially to be used for training

deep neural network models in machine translations and speech recognition applications.

The main components are Minibatch gradient descent and the learning rate schedules.

Minibatch gradient descents is a method of calculating the learning individual rate of a

model rather than the entire batch. This allows the algorithm to adapt quickly during

training.

Recently, ADAM has been introduced as an implementation of the gradient-free

stochastic optimization method by Kingma and BA. In this algorithm, both the step size

and learning rate are scholastically controlled by the temperature parameter. So it can be

considered the RMS-prop with momentum it combines learning rates with momentum.

ADAM Formulation

∆𝜔𝑡 = −𝜂
𝑥𝑡

√𝑦𝑡 + 𝜖
∗ 𝑔𝑡

Where

gt is the gradient at time t

xt is the exponent average of the gradient with w

η is the learning rate

ADAM Algorithm

17

#Implementing Adam

def adam(params, grads, lr, b1=0.9, b2=0.999, eps=1e-8):

 m, v = [0] * len(params), [0] * len(params)

 for t, p, g in zip(count(), params, grads):

 m = b1 * m + (1 - b1) * g

 v = b2 * v + (1 - b2) * g * g

 m_hat = m / (1 - b1**t)

 v_hat = v / (1 - b2**t)

 p -= lr * m_hat / (np.sqrt(v_hat) + eps)

 return params

from itertools import count

2.4 RMSprop

RMSprop stands for Root Mean Square Propagation is a technique for reducing the

noise in the neural network by smoothing out the errors as they are propagated through

the network, it is an algorithm designed to address some of the issues encountered with

the stochastic gradient descent. Some researchers believe that adding a single layer of

neurons to a deep neural network can reduce the network accuracy by up to 10%.

However, recent research shows that using RMSprop can help reduce this effect and

improve the accuracy of deep neural networks.

Two key techniques to decrease error in deep learning models are to propagate

error throughout the network and smooth out values before transferring them to the next

layer through weight decay, and to regularise network bias using a loss function that

penalises high values of the network weight. Deep network training can become laborious

and complex as a result of this procedure, which is frequently carried out by adding a

little learning rate to weight updates at each layer. RMSprop, on the other hand, is a more

effective and efficient method since it doesn't require a regulariser and is simpler and

easier to apply in deep learning models.

RMSProp was proposed by Geoffrey Hinton, it was used as an extension of

gradient descent and AdaGrad uses the decaying average of partial gradients in the

adaption of the steps for each parameter.

18

The benefits of using RMSprop are that it has a higher convergence by adaption

the learning rate, It can converge to the optimal solution faster than SGD especially when

dealing with noisy gradients. Although it has these benefits there are some limitations of

it such as hyperparameter tuning which causes the decay rate and initial learning rate that

need to be tuned for specific tasks.

𝑉𝑑𝑤 = 𝛽𝑉𝑑𝑤 + (1 − 𝛽)𝑑𝑤2

𝑊 = 𝑊 − 𝛼
𝑑𝑤

√𝑉𝑑𝑤

Where:

V_dw: The exponentially decaying moving average of the squared gradient parameter w

β: This is used as to control the decay rate of the moving average. The higher β

places more weight on past squared gradients and the lower β on more recent updates.

dw: This is the current gradient of the loss function with respect to parameter w.

(1-β): This term scales the contribution of the current squared gradient to the

moving average.

RMSProp Algorithm

RMSProp algorithm

def RMSProp(objective_function, derivative_function, values_range, n_iterations,

step_size, Beta):

 # list of all solution points

 all_solutions_list = list()

 # initial point generation within the range

 current_solution_point = values_range[:, 0] + rand(len(values_range)) *

(values_range[:, 1] - values_range[:, 0])

 # squared gradients average

 squared_gradient_avg = [0.0 for _ in range(values_range.shape[0])]

19

3 PROPOSED METHODOLOGY

The primary purpose of this work is to develop an optimization technique to

improve the accuracy of neural networks. In addition, the optimization techniques reduce

the time and the complexity of the neural network. In this section, we will be talking

about briefly the proposed methodology.

Training of neural networks is usually cumbersome and takes a lot of time

sometimes it takes or even weeks. Because of this, there is a need for improved and

efficient training speed to carry out such applications especially when considering the

parallelisations of CNN.

Why CNN?, We moved to CNN because of the weight sharing in CNN while

performing convolution operations on input raw images. Which tremendously cut down

parameters in the whole network making network computation less incentive. The other

thing is dimensionally reduction because of the introduction of poling layers in the

network The proposed optimization method is a modified version of Adam optimiser in

which we remove the additional hyperparameter.

Figure 3.1 – Proposed sequence diagram for proposed Optimization technique.

20

3.1 Pseudo code for Adam optimiser method

Algorithm: Adaptive Moment Estimation (Adam)

Require: α: Stepsize

Require: β1, β2 ∈ [0, 1): Exponential decay rates for the moment estimates

Require: f(θ): Stochastic objective function with parameters θ

Require: θ0: Initial parameter vector

1. m0 ← 0 (Initialize 1st moment vector)

2. v0 ← 0 (Initialize 2nd moment vector)

3. t ← 0 (Initialize timestep)

while θt not converged do

1.t ← t + 1

1. gt ← ∇θft(θt−1) (Get gradients w.r.t. stochastic objective at timestep t)

2. mt ← β1 · mt−1 + (1 − β1) · gt (Update biased first moment estimate)

3. vt ← β2 · vt−1 + (1 − β2) · g²t (Update biased second raw moment estimate)

4. 𝑚^𝑡m^t ← mt / (1 − β1^t) (Compute bias-corrected first-moment estimate)

5. 𝑣^𝑡v^t ← vt / (1 − β2^t) (Compute bias-corrected second raw moment estimate)

6. θt ← θt−1 − α · 𝑚^𝑡m^t / (√𝑣^𝑡v^t + ε) (Update parameters)

end while

return θt (Resulting parameters)

3.2 Experimental Environment And Results

This gives more insight into the environment we conducted and the implementation

of the realization techniques during the training of the model.

We will be working on detecting handwritten digits using the CNN model that is

provided using MNIST(Modified National Institute of Standards and Technology

Database) data to make a simple model made up of handwritten digits between 0 and 9

[1,2]. Where each image has a pixel of 28 x 28, the dataset is split into two portions for

training and testing sets. The training set contains 60,00 images of handwritten digits used

to train models and the Testing set contains 10,00 images of handwritten digits to train

21

models on unseen data that is being to have a very low run time with the Adam algorithm.

We are using the MNIST data set as it is more simple and easy to use.

Table 3.1 – Experimental Environment

Component Description

System Model Intel core i5 vPro 8th Gen

Operating System Windows 11

GPU Intel ® UHD Graphic 620

RAM 16GB

ROM 500 GB SSD

IDE Visual Studio Code

Environment Jupyter

Programming Language Python 3.8

Libraries Numpy, Matplotlib, Sklearn, Plotly, TensorFlow,

VisualKeras

In the training of the model in the Jupyter environment, we applied the Adam

Optimiser algorithm in Cell [13] and [21] for more efficiency in the training of the model.

Figure 3.2 – Model Accuracy

 We made sure to apply it also in the extra layer of the model which we added for

a more accurate result. With Tensorflow the Adam Optimization algorithm is already

included in the library which makes it easier to implement especially for beginners. A

lower learning rate for the convolution layers is often used in practice when applying. We

show the effectiveness of Adam in deep CNNs During the training process, the proposed

22

achieved an accuracy of 98.98% whereas during the testing process, it achieved an

accuracy of 97.95% Our CNN architecture has two alternating stages that are followed

by a full connected layer of 1000 rectified linear hidden units (ReLU’s).

23

CONCLUSION

In the course of the experiment. Training loss is used to measure how a neural

network model fits the training data. The error of the model is assessed with the training

set. It is evaluated by taking the sum of errors in the training sets.

 Validation loss is a metric used to measure the performance of the neural network

on the validation set.

If the validation loss is greater than the training loss, it shows that the model is not

fitted, which means the model is unable to train and give accurate data. The validation

loss is greater than the training loss and changes frequently, it is known as overfitting.

The program below gives more insight into the step-by-step process for training the

model and the implementation of the optimization algorithm.

24

REFERENCES

1. Wang, S.Y.; Wang, O.; Zhang, R.; Owens, A.; Efros, A.A. CNN-generated images

are surprisingly easy to spot... for now. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–

19 June 2020; pp. 8695–8704.

2. Sun, R.Y. Optimization for deep learning: An overview. J. Oper. Res. Soc. China

2020, 8, 249–294. [CrossRef]

3. Weinan, E.; Ma, C.; Wu, L. A comparative analysis of optimization and

generalization properties of two-layer neural network and random feature models

under gradient descent dynamics. Sci. China Math 2019.

4. Duchi, J.; Hazan, E.; Singer, Y. Adaptive subgradient methods for online learning

and stochastic optimization. J. Mach. Learn. Res. 2011, 12, 2121–2159.

5. Zeiler, M.D. Adadelta: An adaptive learning rate method. arXiv 2012,

arXiv:1212.5701.

6. Hinton, G. Neural networks for machine learning. Coursera video lectures. 2012.

Available online:

https://archive.org/details/academictorrents_743c16a18756557a67478a7570baf24

a59f9cda6 (accessed on 1 December 2022).

7. Sutskever, I.; Martens, J.; Dahl, G.; Hinton, G. On the importance of initialization

and momentum in deep learning. In Proceedings of the International Conference on

Machine Learning, PMLR, Atlanta, GA, USA, 17–19 June 2013; pp. 1139–1147.

8. Zhang, Z. Improved Adam optimizer for deep neural networks. In Proceedings of

the 2018 IEEE/ACM 26th International Symposium on Quality of Service

(IWQoS), Banff, AB, Canada, 4–6 June 2018; IEEE: New York, NY, USA, 2018;

pp. 1–2.

9. Dozat, T. Incorporating Nesterov momentum into Adam. In Proceedings of the

International Conference on Learning Representations, San Juan, Puerto Rico, 2–4

May 2016.

25

10. Wang, Y.; Zhou, P.; Zhong, W. An optimization strategy based on the hybrid

algorithm of Adam and SGD. In Proceedings of the MATEC Web of Conferences,

2018; EDP Sciences: Paris, France, 2018; Volume 232, p. 03007.

11. Newton, D.; Yousefi, F.; Pasupathy, R. Stochastic gradient descent: Recent trends.

In Recent Advances in Optimization and Modeling of Contemporary Problems;

INFORMS: Catonsville, MD, USA, 2018; pp. 193–220.

12. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014,

arXiv:1412.6980.

13. Liu, Z.; Xu, X.; Fang, D.; Gan, D. Optimizing CNN Using Adaptive Moment

Estimation for Image Recognition. In Proceedings of the 2023 IEEE International

Conference on Control, Electronics and Computer Technology (ICCECT), Jilin,

China, 2023; pp. 454-463. doi: 10.1109/ICCECT57938.2023.10140526.

14. Kingma, Diederik P., and Jimmy Ba. "Adam: A method for stochastic

optimization." arXiv preprint arXiv:1412.6980 (2014).

15. DataCamp. Available online: https://www.datacamp.com/ (accessed on 1 May

2024).

16. IBM. Neural Networks. Available online: https://www.ibm.com/topics/neural-

networks (accessed on 1 May 2024).

17. GeeksforGeeks. ML | Stochastic Gradient Descent (SGD). Available online:

https://www.geeksforgeeks.org/ml-stochastic-gradient-descent-sgd/ (accessed on 1

May 2024).

18. Databricks. Adagrad. Available online:

https://www.databricks.com/glossary/adagrad (accessed on 1 May 2024).

19. DeepAI. Machine Learning. Available online: https://deepai.org/machine-learning

(accessed on 1 May 2024).

20. Scaler. RMSprop. Available online: https://www.scaler.com/topics/deep-

learning/rmsprop/ (accessed on 1 May 2024).

21. Zhang, L.C. Tutorial on Gradient Descent. Available online:

https://www.cs.toronto.edu/~lczhang/321/tut/tut06.html (accessed on 1 May 2024).

26

22. Mirzaei, A. Hand-written digit detection CNN. Available online:

https://www.kaggle.com/code/amirhosseinmirzaie/hand-written-digit-detection-

cnn-tensorflow/notebook (accessed on 1 May 2024).

23. ChatGPT, OpenAI's language model. 2024.

27

APPENDIX

Importing all necessary Library for our Model

28

29

Model: "sequential_5"

 Layer (type) Output Shape Param #

===

 conv2d_13 (Conv2D) (None, 24, 24, 6) 156

 max_pooling2d_10 (MaxPoolin (None, 12, 12, 6) 0

 g2D)

 conv2d_14 (Conv2D) (None, 8, 8, 16) 2416

 max_pooling2d_11 (MaxPoolin (None, 4, 4, 16) 0

 g2D)

 flatten_5 (Flatten) (None, 256) 0

 dense_12 (Dense) (None, 120) 30840

 dense_13 (Dense) (None, 84) 10164

 dense_14 (Dense) (None, 10) 850

===

Total params: 44,426

Trainable params: 44,426

Non-trainable params: 0

Epoch 1/10

938/938 [==============================] - 24s 23ms/step - loss: 0.2441 - accuracy: 0.9269 - val_loss: 0.1336 - val_accuracy: 0.9564

Epoch 2/10

938/938 [==============================] - 21s 22ms/step - loss: 0.0740 - accuracy: 0.9773 - val_loss: 0.0667 - val_accuracy: 0.9783

Epoch 3/10

938/938 [==============================] - 23s 24ms/step - loss: 0.0539 - accuracy: 0.9838 - val_loss: 0.0415 - val_accuracy: 0.9864

Epoch 4/10

938/938 [==============================] - 22s 24ms/step - loss: 0.0430 - accuracy: 0.9867 - val_loss: 0.0335 - val_accuracy: 0.9897

Epoch 5/10

938/938 [==============================] - 20s 22ms/step - loss: 0.0344 - accuracy: 0.9891 - val_loss: 0.0334 - val_accuracy: 0.9903

Epoch 6/10

938/938 [==============================] - 26s 28ms/step - loss: 0.0290 - accuracy: 0.9907 - val_loss: 0.0387 - val_accuracy: 0.9887

Epoch 7/10

938/938 [==============================] - 23s 24ms/step - loss: 0.0261 - accuracy: 0.9913 - val_loss: 0.0353 - val_accuracy: 0.9883

Epoch 8/10

938/938 [==============================] - 21s 23ms/step - loss: 0.0226 - accuracy: 0.9926 - val_loss: 0.0343 - val_accuracy: 0.9890

Epoch 9/10

938/938 [==============================] - 21s 22ms/step - loss: 0.0186 - accuracy: 0.9939 - val_loss: 0.0337 - val_accuracy: 0.9903

Epoch 10/10

938/938 [==============================] - 25s 27ms/step - loss: 0.0166 - accuracy: 0.9944 - val_loss: 0.0584 - val_accuracy: 0.9838

313/313 [==============================] - 3s 9ms/step - loss: 0.0584 - accuracy: 0.9838

Test accuracy: 0.9837999939918518

30

Model: "sequential_6"

 Layer (type) Output Shape Param #

===

 conv2d_15 (Conv2D) (None, 26, 26, 32) 320

 max_pooling2d_12 (MaxPoolin (None, 13, 13, 32) 0

 g2D)

 dropout_7 (Dropout) (None, 13, 13, 32) 0

 conv2d_16 (Conv2D) (None, 11, 11, 64) 18496

31

 max_pooling2d_13 (MaxPoolin (None, 5, 5, 64) 0

 g2D)

 dropout_8 (Dropout) (None, 5, 5, 64) 0

 conv2d_17 (Conv2D) (None, 3, 3, 64) 36928

 flatten_6 (Flatten) (None, 576) 0

 dropout_9 (Dropout) (None, 576) 0

 dense_15 (Dense) (None, 64) 36928

 dense_16 (Dense) (None, 10) 650

===

Total params: 93,322

Trainable params: 93,322

Non-trainable params: 0

Epoch 1/10

938/938 [==============================] - 49s 48ms/step - loss: 0.3098 - accuracy: 0.9000 - val_loss: 0.0558 - val_accuracy: 0.9829

Epoch 2/10

938/938 [==============================] - 46s 49ms/step - loss: 0.0993 - accuracy: 0.9698 - val_loss: 0.0364 - val_accuracy: 0.9880

Epoch 3/10

938/938 [==============================] - 47s 50ms/step - loss: 0.0747 - accuracy: 0.9766 - val_loss: 0.0296 - val_accuracy: 0.9894

Epoch 4/10

938/938 [==============================] - 46s 49ms/step - loss: 0.0662 - accuracy: 0.9795 - val_loss: 0.0255 - val_accuracy: 0.9917

Epoch 5/10

938/938 [==============================] - 46s 49ms/step - loss: 0.0580 - accuracy: 0.9819 - val_loss: 0.0254 - val_accuracy: 0.9913

Epoch 6/10

938/938 [==============================] - 50s 53ms/step - loss: 0.0524 - accuracy: 0.9834 - val_loss: 0.0239 - val_accuracy: 0.9911

Epoch 7/10

938/938 [==============================] - 46s 49ms/step - loss: 0.0473 - accuracy: 0.9851 - val_loss: 0.0256 - val_accuracy: 0.9919

Epoch 8/10

938/938 [==============================] - 45s 48ms/step - loss: 0.0460 - accuracy: 0.9857 - val_loss: 0.0243 - val_accuracy: 0.9913

Epoch 9/10

938/938 [==============================] - 48s 51ms/step - loss: 0.0438 - accuracy: 0.9859 - val_loss: 0.0203 - val_accuracy: 0.9934

Epoch 10/10

938/938 [==============================] - 46s 49ms/step - loss: 0.0401 - accuracy: 0.9871 - val_loss: 0.0228 - val_accuracy: 0.9929

32

Classification Report:

 precision recall f1-score support

 0 0.99 1.00 1.00 980

 1 0.99 1.00 1.00 1135

 2 1.00 0.99 1.00 1032

 3 0.99 1.00 0.99 1010

 4 1.00 0.98 0.99 982

 5 0.99 0.99 0.99 892

 6 1.00 0.99 0.99 958

 7 0.99 0.99 0.99 1028

 8 1.00 0.99 0.99 974

 9 0.98 0.99 0.99 1009

 accuracy 0.99 10000

 macro avg 0.99 0.99 0.99 10000

weighted avg 0.99 0.99 0.99 10000

33

