Гриценко, Костянтин ГригоровичГриценко, Константин ГригорьевичHrytsenko, Kostiantyn Hryhorovych2020-12-172020-12-172019Гриценко К. Г. Аналіз методів виявлення шахрайств у банках, що здійснюються персоналом банку // Інфраструктура ринку. 2019. В. 34. С. 333-337. ULR: http://www.market-infr.od.ua/uk/34-20190000-0002-7855-691Xhttps://essuir.sumdu.edu.ua/handle/123456789/81146Шахрайства банківського персоналу мають глобальний характер. Їх наслідком є порушення операційної діяльності банку, прямі фінансові збитки, а також втрата репутації та довіри, зниження мотивації банківського персоналу, втрата частки банківського ринку та в результаті банкрутство банку. У зв’язку з цим актуальною та практично значущою є задача створення потужної інтелектуальної системи протидії шахрайствам, перший етап рішення якої полягає в проведенні порівняльного аналізу існуючих економіко-математичних методів виявлення шахрайств у банках. Зазначені методи класифіковано за чотирма групами. Якісні методи враховують невизначеність за допомогою суб’єктивних експертних оцінок. Кількісні методи базуються на традиційному математичному апараті, а методи машинного навчання – на технологіях штучного інтелекту. Оптимальними для врахування невизначеності та виявлення шахрайств у банках є гібридні методи, що використовують сильні сторони різних підходів.Мошенничества банковского персонала имеют глобальный характер. Их следствием является нарушение операционной деятельности банка, прямые финансовые убытки, а также потеря репутации и доверия, снижение мотивации банковского персонала, потеря доли банковского рынка и в результате банкротство банка. В связи с этим актуальной и практически значимой является задача создания мощной интеллектуальной системы противодействия мошенничеству, первый этап решения которой состоит в проведении сравнительного анализа существующих экономико-математических методов выявления мошенничеств в банках. Указанные методы классифицированы на четыре группы. Качественные методы учитывают неопределенность с помощью субъективных экспертных оценок. Количественные методы базируются на традиционном математическом аппарате, а методы машинного обучения – на технологиях искусственного интеллекта. Оптимальными для учета неопределенности и выявления мошенничества в банках являются гибридные методы, использующие сильные стороны различных подходов.Banking personnel’ frauds are global. They result in disruption of the bank’s operating activities, direct financial losses, as well as loss of reputation and trust, loss of motivation of banking personnel, loss of banking market share and, as a result, bankruptcy of the bank. In this regard, the task of creating a powerful intellectual system of fraud counteraction, the first step of solving which is to carry out a comparative analysis of existing economic-mathematical methods of fraud detection in banks, is relevant and practically important. These methods were classified into four groups. Qualitative methods address uncertainty through subjective expert judgments. Quantitative methods are based on the traditional mathematical apparatus, and machine learning methods are based on artificial intelligence technologies. They account for uncertainty through statistics methods and probability theory. Hybrid methods that use the strengths of different approaches are best for accounting for uncertainty and identifying bank fraud.ukcneбанківський персоналбанковский персоналbanking personnelметоди виявлення шахрайстваметоды выявления мошенничестваfraud detection methodsбанківські операціїбанковские операцииbanking transactionsкредитні карткикредитные картыcredit cardsвикривлена фінансова звітністьискаженная финансовая отчетностьfraudulent financial statementsАналіз методів виявлення шахрайств у банках, що здійснюються персоналом банкуAnalysis of methods of fraud detection of bank personnelArticle