Balaz, P.Guilmeau, E.Achimovicova, M.Balaz, M.Daneu, N.Доброжан, Олександр АнатолійовичДоброжан, Александр АнатольевичDobrozhan, Oleksandr AnatoliiovychKanuchova, M.2021-07-222021-07-222021Baláž P, Guilmeau E, Achimovičová M, Baláž M, Daneu N, Dobrozhan O, Kaňuchová M. Bismuth Doping in Nanostructured Tetrahedrite: Scalable Synthesis and Thermoelectric Performance. Nanomaterials. 2021; 11(6):1386. https://doi.org/10.3390/nano110613860000-0001-9238-7596https://essuir.sumdu.edu.ua/handle/123456789/84730In this study, we demonstrate the feasibility of Bi-doped tetrahedrite Cu12Sb4−xBixS13 (x = 0.02–0.20) synthesis in an industrial eccentric vibratory mill using Cu, Sb, Bi and S elemental precursors. High-energy milling was followed by spark plasma sintering. In all the samples, the prevailing content of tetrahedrite Cu12Sb4S13 (71–87%) and famatinite Cu3SbS4 (13–21%), together with small amounts of skinnerite Cu3SbS3, have been detected. The occurrence of the individual Cu-Sb-S phases and oxidation states of bismuth identified as Bi0 and Bi3+ are correlated. The most prominent effect of the simultaneous milling and doping on the thermoelectric properties is a decrease in the total thermal conductivity (κ) with increasing Bi content, in relation with the increasing amount of famatinite and skinnerite contents. The lowest value of κ was achieved for x = 0.2 (1.1 W m−1 K −1 at 675 K). However, this sample also manifests the lowest electrical conductivity σ, combined with relatively unchanged values for the Seebeck coefficient (S) compared with the un-doped sample. Overall, the lowered electrical performances outweigh the benefits from the decrease in thermal conductivity and the resulting figure-of-merit values illustrate a degradation effect of Bi doping on the thermoelectric properties of tetrahedrite in these synthesis conditions.enCC BY 4.0tetrahedritedopingbismuthhigh-energy millingthermoelectricityBismuth Doping in Nanostructured Tetrahedrite: Scalable Synthesis and Thermoelectric PerformanceArticle