Журнал нано- та електронної фізики (Journal of nano- and electronic physics)
Permanent URI for this collectionhttps://devessuir.sumdu.edu.ua/handle/123456789/197
Browse
7 results
Search Results
Item Textured Bifacial Silicon Solar Cells Under Various Illumination Conditions(Sumy State University, 2024) Aliev, R.; Komilov, M.; Mirzaalimov, N.; Mirzaalimov, A.; Alive, S.; Gulomova, I.; Gulomov, J.У сонячний день передня сторона двосторонніх сонячних елементів освітлюється прямим, а задня сторона – розсіяним світлом. Тому важливо вивчити вплив дифузії та прямого світла на двосторонній сонячний елемент. У цьому дослідженні шляхом моделювання було визначено вплив розсіяного та прямого світла та температури на текстурований двосторонній сонячний елемент. Відповідно до отриманих результатів, оптимальне значення кута базису текстури для двосторонньої кремнієвої сонячної батареї становить 580. У похмурий день, при розсіяному освітленні з обох сторін, площинні та оптимально текстуровані сонячні батареї мають ККД 13,14 % і 16,03 % і струм короткого замикання 4,34 мА/см2 і 5,49 мА/см2. Струм короткого замикання становить 2,28 мА/см2 і 2,88 мА/см2, коли розсіяним світлом освітлена лише лицьова сторона. У сонячний день, коли пряме світло падає на лицьову сторону, а розсіяне – на тильну, струм короткого замикання планарної та оптимально текстурованої сонячної батареї становить 27,79 мА/см2 і 35,16 мА/см2 відповідно. Струм короткого замикання становить 25,73 мА/см2 і 32,65 мА/см2, коли прямим світлом освітлена лише лицьова сторона.Item Suns-Voc Characteristics of Silicon Solar Cell: Experimental and Simulation Study(Sumy State University, 2023) Gulomov, J.; Aliev, R.; Kakhkhorov, J.; Tursunov, B.Ефективність сонячних елементів залежить від якості пасивації поверхні. Якість пасивації проаналізовано як функцію залежності напруги холостого ходу від інтенсивності світла. Тому в даній статті досліджено залежність фотоелектричних параметрів сонячної батареї на основі кремнію від інтенсивності світла. Відповідно до отриманих результатів встановлено, що зміна струму короткого замикання через інтенсивність світла дорівнює 25,6 мА/сонц·см2. Узгодженість результатів досліджень і моделювання з результатами експериментів доводить достовірність і правильність моделі. У цій статті експериментально підтверджено модель кремнієвої сонячної батареї Sentaurus TCAD. Таким чином, шляхом моделювання та експерименту досліджено залежність напруги холостого ходу кремнієвої сонячної батареї від інтенсивності світла. Отримана при моделюванні функціональна залежність напруги холостого ходу задовольно узгоджується з експериментом. Створена в Sentaurus TCAD модель сонячної батареї придатна для дослідження. Крім того, коефіцієнт заповнення сонячної батареї зростав зі збільшенням інтенсивності. Це доводить, що резистивні властивості сонячної батареї покращились.Item Study of Mono- and Polycrystalline Silicon Solar Cells with Various Shapes for Photovoltaic Devices in 3D Format: Experiment and Simulation(Sumy State University, 2022) Gulomov, J.; Aliev, R.; Mirzaalimov, N.; Rashidov, B.; Alieva, J.При підвищенні температури ефективність сонячних елементів падає, тому проектування та побудова фотоелектричних пристроїв із системою охолодження із сонячних елементів замість сонячних панелей є одним із найважливіших завдань сьогодення. В даній науковій роботі були досліджені різні форми фотоелектричних пристроїв у форматі 3D, які можуть охолоджуватися шляхом обертання навколо власної осі. У цих пристроях використовуються переважно трикутні та прямокутні сонячні елементи, тому вплив форми поперечного перерізу на фотоелектричні параметри монокристалічних та полікристалічних кремнієвих сонячних елементів досліджено експериментально та за допомогою моделювання. Результати показали, що сонячні елементи на основі полікристалічного кремнію можна вирізати прямокутними та використовувати у виробництві фотоелектричних пристроїв у формі призми, а сонячні елементи на основі монокристалічного кремнію можна використовувати для трикутного вирізання та у виробництві фотоелектричних пристроїв пірамідальної форми. На основі цих результатів експериментально досліджено фотоелектричний пристрій у формі шестикутної призми із прямокутного сонячного елементу на основі полікристалічного кремнію. Температура поверхні пристрою становила 50 °C без обертання, а напруга холостого ходу складала 13,12 В. У діапазоні швидкості обертання 0-6 рад/с напруга холостого ходу пристрою різко зросла на 0,36 В, а температура поверхні знизилася на 9,4 °C.Item The Effect of Temperature and Base Thickness on Photoelectric Parameters of Amorphous Silicon Solar Cells(Sumy State University, 2022) Gulomov, J.; Ziyoitdinov, J.; Gulomova, I.Одним із важливих завдань фотовольтаїки є конструювання гнучких сонячних елементів, стійких до впливу навколишнього середовища та призначених для покриття поверхонь різної форми. Таким чином, у дослідженні були вивчені сонячні елементи на основі аморфного кремнію. Аморфний кремній має більший коефіцієнт поглинання та ширину забороненої зони, ніж кристалічний кремній. Високий коефіцієнт поглинання доводить, що в тонких плівках можна досягти високого ККД. Згідно з отриманими результатами моделювання, максимальні значення напруги холостого ходу, струму короткого замикання, коефіцієнта заповнення та ККД сонячного елемента на основі аморфного кремнію становили 1,2044 В; 13,49 мА/см2; 80,03 % та 12,18 % відповідно, і були досягнуті при товщинах основи 35, 20, 3 і 15 мкм відповідно. Було вивчено вплив температури на сонячний елемент на основі аморфного кремнію оптимальної товщини, оскільки аморфний кремній дуже чутливий до зовнішніх впливів, таких як інтенсивність світла та температура. Тому важливо вивчити вплив температури на властивості сонячних елементів на основі аморфного кремнію. З підвищенням температури напруга холостого ходу зменшувалася, але струм короткого замикання, коефіцієнт заповнення та ККД збільшувалися. Температурні коефіцієнти напруги холостого ходу, струму короткого замикання, коефіцієнта заповнення та ККД становлять відповідно − 1,68×10 – 3; 2,24×10 – 3; 4,5×10 – 5 та 2,27×10 – 4 1/K.Item Semi-Empirical Plasmon Coefficients of Metals for Nanoplasmonics(Sumy State University, 2022) Yuldasheva, N.; Nosirov, M.; Matboboeva, S.; Gulomov, J.У роботі розглянуто програму для визначення плазмонних параметрів деяких металів методом найменших квадратів на основі експериментальних даних. Отримано аналітичні вирази для дійсної частини діелектричної проникності як функції довжини хвилі падаючого світла. Встановлено, що в усіх металах при довжині хвилі падаючого світла λ > 0,7 мкм можуть утворюватися наноплазмони. Досліджено залежність діелектричної проникності наночастинок Au, Ag, Cu, Al, Ni, Pt, Zn та Ti, які сьогодні використовуються для сонячної енергетики, від довжини хвилі. Також визначено довжини хвиль, які створюють ефект наноплазмоніки. Установлено, що плазмонна довжина хвилі для наночастинок золота, срібла та платини дорівнює 142,9, 79,1 та 163,9 нм відповідно. Серед металевих наночастинок Al має найкоротшу плазмонну довжину хвилі, а Pt має найдовшу довжину хвилі. Металеві наночастинки вводяться в кремнієві сонячні елементи головним чином для зміни фотонів в інфрачервоному спектрі на фотони у видимому діапазоні, оскільки кремній переважно поглинає фотони у видимому діапазоні, але не може поглинати фотони в інфрачервоному діапазоні. Для того, щоб металева наночастинка перетворювала інфрачервоні фотони у видимі фотони, довжина хвилі плазмона повинна бути більшою. Тому вважається, що наночастинка Pt має найкращий плазмонний коефіцієнт для введення в кремнієві сонячні елементи. Дійсна частина діелектричної проникності розподіляється по ряду Тейлора, а невідомі коефіцієнти визначаються методом найменших квадратів. Одним з основних параметрів є незалежна від довжини хвилі частина коефіцієнта діелектричної проникності. Для Au, Ag, Cu, Al, Ni, Pt, Zn і Ti вона дорівнює 8,76, 14,154, 26,95, 4,830, 0,189, 6,72 і 3,688. Тому встановлено, що Pt має найменший коефіцієнт діелектричної проникності, а Al – найбільший. Найменша похибка розрахунку за методом найменших квадратів має місце в Pt, а найбільша – в Al.Item Influence of the Angle of Incident Light on the Performance of Textured Silicon Solar Cells(Sumy State University, 2021) Gulomov, J.; Aliev, R.Важливо знати вплив навколишнього середовища на властивості сонячних елементів, оскільки вони зазвичай використовуються у відкритих середовищах. Якщо морфологія поверхні сонячного елемента змінюється, кут падіння світла буде змінюватися залежно від його фотоелектричних властивостей. Отже, у роботі досліджувалися фотоелектричні властивості кремнієвих сонячних елементів, покритих вертикальними пірамідами з різними кутами основи, залежно від кута падіння світла. З отриманих результатів було виявлено, що при зміні кута падіння світла від 0° до 80° густини струму короткого замикання площинних, пірамідальних і текстурованих кремнієвих сонячних елементів з кутами основи пірамід 50.4° і 70.4° зменшуються до 82,6; 88,8; 89,8 %, напруги холостого ходу зменшуються до 10,5; 12,8; 14,1 %, а коефіцієнти заповнення зменшуються до 1,9; 2,2 та 3 %. ККД кремнієвого сонячного елемента, покритого пірамідами з кутом основи 70.4°, краще, ніж ККД планарних та інших текстурованих кремнієвих сонячних елементів в діапазоні кутів падіння світла від 0° до 80°, хоча залежність його фотоелектричних параметрів від кута падаючого світла зростає.Item Study of the Temperature Coefficient of the Main Photoelectric Parameters of Silicon Solar Cells with Various Nanoparticles(Sumy State University, 2021) Gulomov, J.; Aliev, R.Підвищення ефективності параметрів тонкоплівкових сонячних елементів є важливою задачею. Існує декілька методів покращення оптичних та електричних властивостей сонячних елементів на основі плівок кремнію. При впровадженні металевих наночастинок в плівку кремнію змінюються параметри сонячного елемента та їх температурні коефіцієнти. У роботі представлені результати дослідження впливу наночастинок Au, Ag, Pt, Ti, Co, Al і Cu на температурний коефіцієнт фотоелектричних параметрів тонкоплівкового сонячного елемента на основі кремнію, які були розраховані в температурному інтервалі від 250 до 350 К. Установлено, що напруга холостого ходу сонячного елемента з наночастинками Pt і Ti змінюється на 0,4 % при зміні температури на 1 К. Крім того, показано, що струм короткого замикання сонячного елемента з наночастинками Ag зростає в 6,3 рази.