Журнал нано- та електронної фізики (Journal of nano- and electronic physics)

Permanent URI for this collectionhttps://devessuir.sumdu.edu.ua/handle/123456789/197

Browse

Search Results

Now showing 1 - 10 of 16
  • Item
    Influence of Wafer Thickness and Screen-Printing Mesh Counts on the Al-BSF in Crystalline Silicon Solar Cells
    (Sumy State University, 2023) Labdelli, B.; Djelloul, A.; Benharrat, L.; Boucheham, A.; Mazari, H.; Chalal, R.; Manseri, A.
    У роботі були проведені експериментальні дослідження процесу легування алюмінієвих (Al) паст, надрукованих трафаретним друком на кремнієвих поверхнях для сонячних елементів. Досліджений вплив товщини пластини та кількості сіток трафаретного друку на властивості поля задньої поверхні Al (Al-BSF) кремнієвих сонячних елементів Чохральського (Cz-Si). Використовувалися екрани з різною кількістю сіток (150, 200 і 400 меш) для друку різної кількості пасти Al (7, 9,4 та 12 мг/см2). Швидкий термічний відпал (RTP) при 750 °C і 800 °C протягом 60 с був застосований для формування ALBSF. SEM показав утворення шорсткої поверхні з шаром легуючого шару товщиною 4,31 мкм на об’ємній кремнієвій пластині. Аналіз ECV та SIMS показав, що пікова температура відпалу 750 °C і кількість пасти Al 12 мг/см2 підходять для створення оптимального Al-BSF. Ця робота виявила, що на властивості Al-BSF сильно впливає кількість меш, яка використовується для трафаретного друку пасти Al. Однак не було помічено монотонного зв’язку з товщиною пластини. Маска з 150 меш дозволила отримати високі концентрації Al на поверхні, максимальну глибину дифузії та більший середній час життя носіїв заряду.
  • Item
    Optical Properties of GexSi1 – x Binary Compounds in Silicon
    (Sumy State University, 2023) Zikrillaev, N.F.; Kushiev, G.A.; Hamrokulov, Sh.I.; Abduganiev, Y.A.
    Використання альтернативних і відновлюваних джерел енергії в енергозабезпеченні в усьому світі викликає великий практичний інтерес. Зростання інтересу до них зумовлене екологічними міркуваннями, з одного боку, та обмеженістю традиційних вуглеводневих джерел енергії, з іншого. Особливе місце серед альтернативних і відновлюваних джерел енергії займають фотоелектричні перетворювачі сонячної енергії, вивчення фізики, що стало окремим науковим напрямком фотовольтаїки. Розробка та створення фотоелементів на основі кремнію бінарними сполуками атомів германію GexSi1–x в об’ємі також становить особливий інтерес для вчених і спеціалістів. Оскільки виробництво кремнію з бінарними сполуками кремній-германій з певними електричними параметрами і структурою дозволяє значно розширити спектральну область чутливості фотоприймачів і ефективність фотоелементів на основі таких матеріалів.
  • Item
    Photovoltaic Properties of Silicon Doped with Manganese and Germanium
    (Sumy State University, 2023) Zikrillaev, N.F.; Kushiev, G.A.; Isamov, S.B.; Abdurakhmanov, B.A.; Tursunov, O.B.
    Установлено, що зразки кремнію, леговані атомами марганцю та германію, утворюють бінарні сполуки типу Si2˂GeMn˃, які сильно впливають на електрофізичні та оптичні властивості кремнію. Показано, що вплив атомів марганцю після дифузії в кремній призводить до 10 % зниження концентрації оптично активного кисню. Експериментально доведено, що кремній, легований атомами германію та марганцю, може бути використаний для розробки інфрачервоних фотодетекторів, що працюють в діапазоні довжин хвиль 1-8 мкм і дозволяють більш чутливо детектувати інфрачервоне випромінювання та температуру. Установлено, що під час росту відбувається взаємодія між атомами Ge і Mn. Це підтверджується зникненням рівня енергії марганцю в кремнії, який відповідає за гасіння фотопровідності в кремнії, легованому атомами марганцю.
  • Item
    Study of Mono- and Polycrystalline Silicon Solar Cells with Various Shapes for Photovoltaic Devices in 3D Format: Experiment and Simulation
    (Sumy State University, 2022) Gulomov, J.; Aliev, R.; Mirzaalimov, N.; Rashidov, B.; Alieva, J.
    При підвищенні температури ефективність сонячних елементів падає, тому проектування та побудова фотоелектричних пристроїв із системою охолодження із сонячних елементів замість сонячних панелей є одним із найважливіших завдань сьогодення. В даній науковій роботі були досліджені різні форми фотоелектричних пристроїв у форматі 3D, які можуть охолоджуватися шляхом обертання навколо власної осі. У цих пристроях використовуються переважно трикутні та прямокутні сонячні елементи, тому вплив форми поперечного перерізу на фотоелектричні параметри монокристалічних та полікристалічних кремнієвих сонячних елементів досліджено експериментально та за допомогою моделювання. Результати показали, що сонячні елементи на основі полікристалічного кремнію можна вирізати прямокутними та використовувати у виробництві фотоелектричних пристроїв у формі призми, а сонячні елементи на основі монокристалічного кремнію можна використовувати для трикутного вирізання та у виробництві фотоелектричних пристроїв пірамідальної форми. На основі цих результатів експериментально досліджено фотоелектричний пристрій у формі шестикутної призми із прямокутного сонячного елементу на основі полікристалічного кремнію. Температура поверхні пристрою становила 50 °C без обертання, а напруга холостого ходу складала 13,12 В. У діапазоні швидкості обертання 0-6 рад/с напруга холостого ходу пристрою різко зросла на 0,36 В, а температура поверхні знизилася на 9,4 °C.
  • Item
    1064 nm Wavelength p-i-n Photodiode with Low Influence of Periphery on Dark Currents
    (Sumy State University, 2022) Kukurudziak, M.S.
    В процесі проведення досліджень помічено проблему неконтрольованого зростання рівня темнового струму охоронного кільця фотодіодів, що проявлялось як за температури Т = 293 К, так і (значною мірою) при випробуванні приладів за підвищеної температури (Т = 358 К). У статті представлено результати розробки p-i-n фотодіода на основі високоомного кремнію р-типу провідності з підвищеною чутливістю та пониженим рівнем темнового струму охоронного кільця на довжині хвилі 1064 нм. У пропонованій конструкції фотодіода зменшено товщину периферійного оксиду кристалу для зниження впливу дислокаційної складової струму та зарядових станів на зворотні характеристики. Для реалізації розробленої конструкції приладу використовується двохстадійна дифузія фосфору. Після дифузії (загонки) фосфора знімалося фосфоросилікатне скло і проводилася додаткова фотолітографія, під час якої стравлювався весь шар периферійного оксиду та частини окислу між ОК та ФЧЕ. На другій стадії дифузії фосфора (розгонцi) вирощувався просвітлюючий оксид товщиною 190-220 нм на фоточутливих площадках і на периферії кристалу. Фоточутливі площадки, охоронне кільце та периферійна частина кристалу відмежовувались оксидом товщиною 650-700 нм, вирощеним на першій операції. Виготовлення фотодіодів виконувалося з використанням таких режимів технологічних процесів, як і у серійному виробництві, а їхні параметри порівнювались із приладами, виготовленими в стандартній конструкції. Аналіз показав, що фотодіоди запропонованої конструкції характеризуються нижчими та стабільнішими, ніж серійні прилади, темновими струмами ОК та ФЧЕ, причому не тільки за кімнатної температури, але й за температури 358 К.
  • Item
    Effect of Deuterium Ion Implantation Dose on Microstructure and Nanomechanical Properties of Silicon
    (Sumy State University, 2022) Kuprin, A.S.; Dub, S.N.; Nikolenko, A.S.; Strelchuk, V.V.; Morozov, O.; Tolmachova, G.N.; Pudov, A.O.
    Імплантація водню в кремній з подальшим відпалом (технологія Smart-Cut) застосовується для виготовлення мікроелектронних пристроїв. Покращені характеристики отриманих структур були досягнуті шляхом імплантації дейтерію замість водню. Метод наноіндентування широко використовується при вимірюванні твердості H та модуля пружності E матеріалів у нанорозмірному масштабі. Метою даної роботи є дослідження впливу дози імплантації іонів дейтерію на структуру та механічні властивості монокристалічного кремнію в нанорозмірному масштабі. Досліджено вплив доз імплантації іонів дейтерію в діапазоні від 2×1015 до 1×1018 D/см2 на структуру та механічні властивості монокристалу кремнію в наномасштабі. Зразки полірованого кремнію (111) імплантували при 293 К пучком іонів дейтерію з енергією 24 кеВ. Методом Раманівської спектроскопії було показано, що в залежності від дози імплантації в кремнії утворюються три структурні стани: дейтерій знаходиться у твердому розчині, суміш аморфної фази кремнію і твердого розчину, і тільки аморфний стан (a-Si:D). Термічна десорбційна спектроскопія показує, що при низьких дозах імплантації в спектрах термодесорбциї дейтерію спостерігається один пік з максимумом при Tmax ~ 575 К, а при дозах вище 5×1017 D/см2 з’являється низькотемпературний пік з максимумом при 500 К, що свідчить про утворення аморфного гідрогенізованого кремнію a-Si:D. Наноіндентування показало, що в режимі повної пластичності в контакті (> 100 нм), утворення твердого розчину дейтерію в кремнії спричиняє збільшення твердості поверхні зразка до 14,1 ГПа. Твердість поверхні різко зменшується до 3,6 ГПа з утворенням шару a-Si:D.
  • Item
    Influence of the Angle of Incident Light on the Performance of Textured Silicon Solar Cells
    (Sumy State University, 2021) Gulomov, J.; Aliev, R.
    Важливо знати вплив навколишнього середовища на властивості сонячних елементів, оскільки вони зазвичай використовуються у відкритих середовищах. Якщо морфологія поверхні сонячного елемента змінюється, кут падіння світла буде змінюватися залежно від його фотоелектричних властивостей. Отже, у роботі досліджувалися фотоелектричні властивості кремнієвих сонячних елементів, покритих вертикальними пірамідами з різними кутами основи, залежно від кута падіння світла. З отриманих результатів було виявлено, що при зміні кута падіння світла від 0° до 80° густини струму короткого замикання площинних, пірамідальних і текстурованих кремнієвих сонячних елементів з кутами основи пірамід 50.4° і 70.4° зменшуються до 82,6; 88,8; 89,8 %, напруги холостого ходу зменшуються до 10,5; 12,8; 14,1 %, а коефіцієнти заповнення зменшуються до 1,9; 2,2 та 3 %. ККД кремнієвого сонячного елемента, покритого пірамідами з кутом основи 70.4°, краще, ніж ККД планарних та інших текстурованих кремнієвих сонячних елементів в діапазоні кутів падіння світла від 0° до 80°, хоча залежність його фотоелектричних параметрів від кута падаючого світла зростає.
  • Item
    Analysis of Mechanisms to Increase the Industrial Silicon Solar Cell Efficiency
    (Sumy State University, 2021) Kirichenko, M.V.; Zaitsev, R.V.; Minakova, K.A.; Chugai, O.M.; Oleynick, S.V.; Bilyk, S.Yu.; Styslo, B.O.
    Досліджено можливості підвищення ефективності понад 20 % для кремнієвих фотоелектричних перетворювачів китайського виробництва. Методом комп'ютерного моделювання встановлено, що реалізовані в таких фотоелектричних перетворювачах часи життя нерівноважних носіїв заряду, які складають 520 мкс, не обмежують можливість збільшення їх ККД понад 20 %. Показано, що збільшення густини фотоструму до 43,1 мА/см2 призводить до зростання ККД до 20,1 %, а зниження густини діодного струму насичення до 3,1∙10 – 14 A/см2 зумовлює зростання ККД до 20,4 %. Одночасна зміна цих діодних характеристик призводить до збільшення ККД до 23,1 %. У роботі пропонуються фізикотехнологічні підходи для збільшення густини фотоструму і зменшення густини діодного струму насичення в готових фотоелектричних перетворювачах. У статті проведено дослідження впливу робочої температури на ефективність кристалічних кремнієвих фотоелектричних перетворювачів. Показано, що зі зростанням робочої температури відносне зниження ККД монокристалічних приладів становить – 0,7 відн. %/C, що істотно вище, ніж в приладових структурах європейського виробництва і обумовлено нетрадиційним зниженням густини струму короткого замикання. Математичне моделювання впливу світлових діодних характеристик на ККД кристалічних кремнієвих сонячних елементів показало, що зменшення ефективності приладових структур при збільшенні робочої температури обумовлено не тільки зростанням густини діодного струму насичення з 10 – 13 до 3·10 – 13 А, що складає 300 %, але й зниженням шунтуючого опору з 2,5 до 1,5 кОм. Дослідження впливу робочої температури на діодний струм насичення показало, що висота потенційного бар'єру в досліджених кремнієвих фотоелектричних перетворювачах складає 0,87 еВ, що обумовлено недостанім рівнем легування базового матеріалу. Обмеженість висоти потенційного бар'єру призводить до нетрадиційного зниження електроопору, що шунтує, при збільшенні робочої температури.
  • Item
    Deep Impact of the n-c-Si Defect Density on Heterojunction with Intrinsic Thin Layer Solar Cells
    (Sumy State University, 2021) Dahlal, Z.; Hamdache, F.; Rached, D.; Rahal, W.L.
    У роботі оптимізовано сонячний елемент n-c-Si на основі гетеропереходу з внутрішнім тонким шаром (HIT): оксид індію і олова (ITO)/гідрогенізований p-легований аморфний кремній (p-a-Si:H)/ гідрогенізований власний поліморфний кремній (i-pm-Si:H)/n-легований кристалічний кремній (n-cSi)/алюміній (Al). За допомогою симулятора ємності сонячних елементів (SCAPS-1D) ми вивчили вплив густини дефектів в об'ємі (Nt) і на поверхні (Nss) активного шару сонячного елемента n-c-Si на характеристику густини струму від напруги (J-V) (напруга холостого ходу, густина струму короткого замикання, коефіцієнт заповнення та ефективність). Для обчислення значень Nss ми взяли середнє між густиною станів Gmg, розташованих у забороненій зоні (U-подібна модель), і загальною густиною станів Ntot (хвости Урбаха), яку ми помножили на товщину дефектного шару. Ми показали, що для товщини дефектної поверхні 32 Å між гідрогенізованим поліморфним кремнієм і кристалічним кремнієм (i-pm-Si:H/n-c-Si) густина станів Gmg, розташованих у забороненій зоні, і густина станів Ntot в хвості Урбаха повинні дорівнювати відповідно 3,5·1017 см – 3 і 2,8·1017 см – 3 (використовуючи U-подібну модель). Можна зробити висновок, що поверхню активного шару необхідно пасивувати так, щоб отримати Nss менше 1011 см – 2. Тоді час життя неосновних носіїв в активному шарі (n-c-Si) має бути більше 1 мс. Дійсно, для Nss = 1010 см – 2 та ꚍ = 5 мс отримано ККД 22,08 %.
  • Item
    Technological Aspects of Formation of Energy-efficient Photovoltaic Solar Energy Converters
    (Sumy State University, 2021) Nebesniuk, O.Y.; Nikonova, Z.A.; Nikonova, A.A.
    У наш час зростає попит на альтернативні джерела енергії, що використовуються в народному господарстві, промисловості та на побутовому рівні. Сонячна енергія є однією з найбільш перспективних альтернатив традиційним способам вироблення електроенергії. Актуальною проблемою є розробка економічних та відновлювальних технологій у виробництві фотоелектричних перетворювачів (ФЕП) на основі полі- та монокристалічного кремнію. Чітко проявляються тенденції створення найскладніших електронних пристроїв на основі багатошарових епітаксійних структур. При цьому формуються дуже високі вимоги до електрофізичних властивостей і досконалості структури кожного шару, ставляться завдання створення якісних та різких p-n переходів і гетеромеж на великих площах епітаксійних композицій. В статті запропоновано нові технологічні аспекти формування кремнієвих наноструктур з прозорими просвітлюючими покриттями, які значно покращать якість ФЕП сонячної енергії на їх основі з ефективністю до 27 %, що дасть поштовх для створення нових енергосистем.