Наукові видання (ТеСЕТ)
Permanent URI for this collectionhttps://devessuir.sumdu.edu.ua/handle/123456789/153
Browse
5 results
Search Results
Item Solidus Temperatures and Hot Hardness of Ti–Nb–Mo Alloys(G. V. Kurdyumov Institute for Metal Physics of the N.A.S. of Ukraine, 2022) Myslyvchenko, O.M.; Bondar, A.A.; Voblikov, V.М.; Tsyganenko, N.I.; Silinska, T.A.; Гапонова, Оксана Петрівна; Гапонова, Оксана Петровна; Haponova, Oksana PetrivnaEight alloys of the Ti–Nb–Mo system are synthesized by the arc remelting method. As shown, they have dendritic microstructures typical of casting. The phase composition and lattice periods of the formed phases are determined. Using the method of differential thermal analysis (DTA), phase transformations in the solid state are investigated, and the temperatures of the onset of melting and crystallization are determined. For alloys, the solidus temperature of which is above 2000°C, together with DTA, the Pirani–Althermum pyrometric method is also used. Based on the experimental data, the temperature dependences of the hardness of the alloys are constructed and the activation energies of deformation of the material under the indenter are calculated. The analysis of the curves of the dependence of the hardness of the alloys is carried out and the temperature of the sharp softening of the material is determined. As shown, that the α→β transition in titanium alloys with an unstable β-phase does not lead to a significant change in hardness.Item Electric-Spark Alloying of Metal Surfaces with Graphite(G. V. Kurdyumov Institute for Metal Physics of the N.A.S. of Ukraine, 2022) Tarelnyk, V. B.; Гапонова, Оксана Петрівна; Гапонова, Оксана Петровна; Haponova, Oksana Petrivna; Konoplianchenko, Ye.V.The article reviews and analyses the current scientific research in the field of surface treatment of metal surfaces with concentrated energy fluxes (CEF) — the electric-spark (in the literature, known also as electrospark) alloying (ESA), which makes it possible to obtain surface structures with unique physical, mechanical and tribological properties at the nanoscale. The ESA method with a graphite electrode (electrospark carburizing — EC) is based on the process of diffusion (saturation of the surface layer of a part with carbon), and it is not accompanied by an increase in the size of the part. In this article, the influence of the EC parameters on the quality of the carburized layer is investigated. The microstructural analysis shows that the three characteristic zones could be distinguished in the structure: the carburized (‘white’) layer, the finely dispersed transition zone with fine grain, and the base metal zone. The analysis of the results of the durometric studies of the coatings is carried out. To achieve the required parameters of dimensional accuracy and roughness of the working surface of the part after the EC process, it is necessary to use the method of non-abrasive ultrasonic finishing (NAUF). In addition, because of applying the NAUF method, the surface roughness is decreased, the tensile stresses are changed to the compressive ones, and the fatigue strength is increased too. In addition, to reduce the roughness of the treated surface, it is proposed to apply the EC technology in stages, reducing the energy of the spark discharge at each subsequent stage. In order to increase the quality of the carburized layer obtained by the EC process, it is proposed to use a graphite powder, which is applied to the treated surface before alloying. The comparative analysis shows that, after the traditional EC process at Wp = 4.6 J, the surface roughness of steel 20 is Ra = 8.3–9.0 μm, and after the proposed technology, Ra = 3.2–4.8 μm. In this case, the continuity of the alloyed layer increases up to 100%; there increases the depth of the diffusion zone of carbon up to 80 μm as well as the microhardness of the ‘white’ layer and its thickness, which increase up to 9932 MPa and up to 230 μm, respectively. The local micro-x-ray spectral analysis of the obtained coatings shows that, at the EC process carried out in a traditional way, the applying Wp = 0.9, 2.6, 4.6 J provides the formation of the surface layers with high-carbon content depths of 70, 100, 120 μm, respectively, and with the use of a graphite powder, they are of 80, 120, 170 μm. While deepening, the amount of carbon is decreasing from 0.72–0.86% to the carbon content in the base metal — 0.17–0.24%. In the near-surface layer formed with the use of the new technology, the pores are filled with free graphite, which could be used as a solid lubricant to improve the operating characteristics of the friction-pairs parts processed thereby.Item Комбіновані електроіскрові припрацювальні покриття бронзових деталей. Частина 2. Розподіл елементів у поверхневому шарі(Інститут металофізики ім. Г. В. Курдюмова НÀН України, 2021) Гапонова, Оксана Петрівна; Гапонова, Оксана Петровна; Haponova, Oksana Petrivna; Тарельник, В`ячеслав Борисович; Тарельник, Вячеслав Борисович; Tarelnyk, Viacheslav Borysovych; Марцинковський, В.С.; Коноплянченко, Є.В.; Мельник, В.І.; Власовець, В.М.; Тарельник, Н.В.; Герасименко, В.О.; Бондарев, С.Г.; Баталова, А.Б.; Кирик, Г.В.; Поливаний, А.Д.; Семирненко, Ю.І.; Рясна, О.В.У статті представлено результати локального мікрорентґеноспектрального аналізу припрацювальних сульфідованих комбінованих електроіскрових покриттів (КЕІП) бронзових деталей. Досліджені покриття одержано в послідовностях S + Ag → Pb → S + Ag і S + Ag → Sn → S + Ag. Встановлено, що для КЕІП характерна наявність елементів металів, що входять до складу електродів-інструментів (Ag, Pb і Sn). У покриттях, до складу яких входить оливо, зі збільшенням енергії розряду, за леґування як сріблом, так і оливом, збільшується дифузійна зона сірки до відповідно 90, 135 і 200 мкм. Сірка по глибині шару розподіляється нерівномірно; її вміст становить 1,59–3,3%. Після формування КЕІП на зразку з покриттям S + Ag → Pb → S + Ag його товщина складає 700 мкм. Сірку виявлено на поверхні і на глибині до 50 мкм, а також у перехідній зоні на відстані ≅650 мкм від поверхні. У разі збільшення енергії розряду в зразках з покриттям S + Ag → Sn → S + Ag товщина нанесеного КЕІП досягає 1,05 і 1,310 мм. Сірку виявлено на поверхні, її дифузійна зона простягається на 200 мкм від поверхні, а в перехідній зоні — на ≅100 мкм.Item Комбіновані електроіскрові припрацювальні покриття бронзових деталей. Частина 3. Трибологічні властивості(Інститут металофізики ім. Г. В. Курдюмова НАН України, 2021) Гапонова, Оксана Петрівна; Гапонова, Оксана Петровна; Haponova, Oksana Petrivna; Тарельник, В`ячеслав Борисович; Тарельник, Вячеслав Борисович; Tarelnyk, Viacheslav Borysovych; Марцинковський, В.С.; Коноплянченко, Є.В.; Мельник, В.І.; Власовець, В.М.; Кирик, Г.В.; Тарельник, Н.В.; Мікуліна, М.О.; Кутах, А.А.; Поливаний, А.Д.; Майфат, М.М.; Калнагуз, О.М.У статті в результаті проведених досліджень вдосконалена технологія нанесення на бронзу БрО10С10 припрацювальних комбінованих електроіскрових покриттів (КЕІП), сформованих у послідовності: S+Ag → Pb → S+Ag і S+Ag → Sn → S+Ag. Покриття, одержані за запропонованою технологією, містять сірку, що знижує схоплювання контактувальних поверхонь, мають достатню для подальшої механічної обробки товщину 0,19–1,31 мм. Трибологічними дослідженнями на тестері Т-01М за схемою «кулька-диск» встановлено, що зі збільшенням товщини КЕІП зростає сила тертя. У зразків з КЕІП (S+Ag → Pb → S+Ag), товщина яких залежно від енергії розряду дорівнює 0,19; 0,26 і 1,01 мм, сила тертя становить 1,454; 1,762 і 2,543 Н відповідно, а у зразків з КЕІП (S+Ag → Sn → S+Ag) товщиною 0,89; 1,05 і 1,31 мм відповідно 0,934; 1,904 і 2,152 Н. Сірка в КЕІП знижує силу тертя сталевої кульки по поверхні бронзових зразків на 19%. Для практичного застосування можна рекомендувати КЕІП (S+Ag → Pb → S+Ag) і (S+Ag → Sn → S+Ag), одержані за енергії розряду відповідно 0,52 → 0,13 → 0,05 і 4,6 → 0,36 → 0,36 Дж, які забезпечують зниження сили тертя у порівнянні з зразками без покриття відповідно у 1,90 і 1,22 раза.Item Fluoride ion conductivity of solid solutions KxPb0.86-xSn1.14F4-x(Serbian Chemical Society, 2021) Pohorenko, Y.; Пшеничний, Роман Миколайович; Пшеничный, Роман Николаевич; Pshenychnyi, Roman Mykolaiovych; Pavlenko, T.; Omelchuk, A.; Trachevskyi, V.The electrical conductivity of solid solutions with tetragonal syngony formed in 0.86(xKF–(1–x)PbF₂)–1.14SnF₂ systems has been studied by ¹⁹F-NMR and impedance spectroscopy. It was found that the Pb₀.₈₆Sn₁.₁₄F₄ phase is characterized by better values of fluoride-ion conductivity than the β-PbSnF₄ compound. It was found that the substitution of Pb²⁺ by K⁺ up to х = 0.07 in the structure of Pb₀.₈₆Sn₁.₁₄F₄ contributes to increase in electrical conductivity by an order of magnitude relative to the original Pb₀.₈₆Sn₁.₁₄F₄. The sample of composition K₀.₀3Pb₀.₈₃Sn1.14F₃.₉₇ has the highest electrical conductivity (σ₆₀₀ = = 0.38 S cm-1, σ₃₃₀ = 0.01 S cm-1). The fluoride anions in the synthesized samples of KxPb₀.₈₆-xSn1.14F4-x solid solutions occupy three structurally nonequivalent positions. It is shown that with increasing temperature, there is a redistribution of fluorine anions between positions in the anion lattice, which results in an increase in the concentration of highly mobile fluoride ions, which determine the electrical conductivity of the samples.