Вісник Сумського державного університету. Економіка (2009-2024)
Permanent URI for this collectionhttps://devessuir.sumdu.edu.ua/handle/123456789/193
Browse
Search Results
Item Аналіз математичних моделей протидії банківським кібершахрайствам(Сумський державний університет, 2022) Кузьменко, Ольга Віталіївна; Кузьменко, Ольга Витальевна; Kuzmenko, Olha Vitaliivna; Яровенко, Ганна Миколаївна; Яровенко, Анна Николаевна; Yarovenko, Hanna Mykolaivna; Скринька, Лілія Олегівна; Скрынька, Лилия Олеговна; Skrynka, Liliia OlehivnaСтаттю присвячено актуальній темі аналізу математичних моделей протидії банківським кібершахрайствам. Дана проблематика обумовлена зростанням ризиків безпеки банківської системи через здійснення шахраями кібератак та реалізації кіберзлочинів. Тому пріоритетним завданням для банківської кібербезпеки є застосування сучасних математичних методів для аналізу джерел кібератак, визначення загроз та збитків ринку банківських послуг, виявлення кібернетичних атак та оцінки сценарії ймовірного кіберризику, тощо. В статті було проаналізовано найбільш розповсюджені види кібершахрайств, серед яких виділяють соціальну інженерію, фішинг, сталкінг, фармінг, DoS-атаки, онлайн-шахрайства, потенційно небажані програми, тощо. Також у дослідженні було розглянуто модель когнітивних обчислень та виявлення підозрілих транзакцій у банківських кіберфізичних системах на основі квантових обчислень у BCPS для постквантової ери. Визначено переваги, недоліки та результати моделі. Для виявлення шахрайства в режимі реального часу шляхом аналізу вхідних банківських транзакцій з платіжними картами запропоновано прогнозне моделювання. В межах даного методу використовуються такі моделі для класифікації виявлення шахрайства, як логістична регресія, дерево рішень та більш вузька техніка – дерево рішень випадкового лісу. Також у дослідженні розглянуто використання алгоритму гармонійного пошуку в нейронних мережах для покращення виявлення шахрайства в банківській системі. З’ясовано, що, хоча дана модель має перевагу у спроможності до навчання на основі минулої поведінки, є труднощі в тривалій обробці великої кількості нейронних мереж. Також наведено етапи реалізації моделі. Крім того, проаналізовано моделювання виявлення шахрайства з кредитними картками на базі використання двох типів моделей: під наглядом і без нагляду. До моделей під наглядом віднесено логістичну регресію, Kнайближчі сусіди, екстремальне підвищення градієнта. Серед неконтрольованих генеративних моделей розглянуто однокласну опорну векторну модель, обмежену модель Больцмана, генеративно-змагальну мережу.