Видання зареєстровані авторами шляхом самоархівування

Permanent URI for this communityhttps://devessuir.sumdu.edu.ua/handle/123456789/1

Browse

Search Results

Now showing 1 - 5 of 5
  • Item
    An Information-Extreme Algorithm for Universal Nuclear Feature-Driven Automated Classification of Breast Cancer Cells
    (Multidisciplinary Digital Publishing Institute, 2025) Савченко, Тарас Русланович; Savchenko, Taras Ruslanovych; Лахтарина, Руслана Юріївна; Lakhtaryna, Ruslana Yuriivna; Денисенко, Анастасія Петрівна; Denysenko, Anastasiia Petrivna; Довбиш, Анатолій Степанович; Dovbysh, Anatolii Stepanovych; Coupland, Sarah E.; Москаленко, Роман Андрійович; Moskalenko, Roman Andriiovych
    Діагностика раку молочної залози значною мірою спирається на гістопатологічну оцінку, яка схильна до суб'єктивності та неефективності, особливо при використанні зображень цілих зрізів (WSI). Це дослідження спрямоване на усунення цих обмежень шляхом розробки автоматизованого алгоритму класифікації клітин раку молочної залози, використовуючи інформаційно-екстремальний підхід машинного навчання та універсальні цитологічні ознаки. Метою є досягнення об'єктивної та узагальненої гістопатологічної діагностики. Методи: Оцифровані гістологічні зображення оброблялися для ідентифікації гіперхроматичних клітин. З окремих клітин було виділено 21 цитологічну ознаку (10 геометричних та 11 текстурних), обраних за їхній потенційний універсальний характер для різних видів раку. Ці ознаки потім використовувалися для класифікації клітин як нормальних або злоякісних за допомогою інформаційно-екстремального алгоритму. Цей алгоритм оптимізує інформаційний критерій у бінарному просторі Геммінга для досягнення надійного розпізнавання з мінімальною кількістю вхідних ознак. Архітектурна інновація полягає в застосуванні цього інформаційно-екстремального підходу до аналізу цитологічних ознак для класифікації ракових клітин. Результати: Функціональна ефективність алгоритму була оцінена на наборі даних зі 176 маркованих зображень клітин, що дало багатообіцяючі результати: точність 89%, прецизійність 85%, повнота 84% та F1-показник 88%. Ці метрики демонструють збалансовану та ефективну модель для автоматизованої класифікації клітин раку молочної залози. Висновки: Запропонований інформаційно-екстремальний алгоритм, що використовує універсальні цитологічні ознаки, пропонує потенційно об'єктивну та обчислювально ефективну альтернативу традиційним методам і може зменшити деякі обмеження глибокого навчання в гістопатологічному аналізі. Майбутня робота буде зосереджена на валідації алгоритму на більших наборах даних та дослідженні його застосовності до інших типів раку.
  • Item
    Decision-making support system for diagnosis of oncopathologies by histological images
    (Elsevier, 2023) Довбиш, Анатолій Степанович; Довбыш, Анатолий Степанович; Dovbysh, Anatolii Stepanovych; Шелехов, Ігор Володимирович; Шелехов, Игорь Владимирович; Shelekhov, Ihor Volodymyrovych; Романюк, Анатолій Миколайович; Романюк, Анатолий Николаевич; Romaniuk, Anatolii Mykolaiovych; Москаленко, Роман Андрійович; Москаленко, Роман Андреевич; Moskalenko, Roman Andriiovych; Савченко, Тарас Русланович; Савченко, Тарас Русланович; Savchenko, Taras Ruslanovych
    The aim of the study is to increase the functional efficiency of machine learning decision support system (DSS) for the diagnosis of oncopathology on the basis of tissue morphology. The method of hierarchical information-extreme machine learning of diagnostic DSS is offered. The method is developed within the framework of the functional approach to modeling of natural intelligence cognitive processes at formation and acceptance of classification decisions. This approach, in contrast to neuronal structures, allows diagnostic DSS to adapt to arbitrary conditions of histological imaging and flexibility in retraining the system by expanding the recognition classes alphabet that characterize different structures of tissue morphology. In addition, the decisive rules built within the geometric approach are practically invariant to the multidimensionality of the diagnostic features space. The developed method allows to create information, algorithmic, and software of the automated workplace of the histologist for diagnosing oncopathologies of different genesis. The machine learning method is implemented on the example of diagnosing breast cancer
  • Item
    Artificial Intelligence Approach in Prostate CancerDiagnosis: Bibliometric Analysis
    (Ivano-Frankivsk National Medical University, 2022) Денисенко, Анастасія Петрівна; Денисенко, Анастасия Петровна; Denysenko, Anastasiia Petrivna; Савченко, Тарас Русланович; Савченко, Тарас Русланович; Savchenko, Taras Ruslanovych; Довбиш, Анатолій Степанович; Довбыш, Анатолий Степанович; Dovbysh, Anatolii Stepanovych; Романюк, Анатолій Миколайович; Романюк, Анатолий Николаевич; Romaniuk, Anatolii Mykolaiovych; Москаленко, Роман Андрійович; Москаленко, Роман Андреевич; Moskalenko, Roman Andriiovych
    Background.Prostate cancer is one of the most common male malignancies worldwide that ranks secondin cancer-related mortality. Artificial intelligence can reduce subjectivity and improve the efficiency ofprostate cancer diagnosis using fewer resources as compared to standard diagnostic scheme.This review aimsto highlight the main concepts of prostate cancer diagnosis and artificial intelligenceapplication and to determine achievements, current trends, and potential research directions in this field,using bibliometric analysis.Materials and Methods.The studies on the application of artificial intelligence in the morphologicaldiagnosis of prostate cancer for the past 35 years were searched for in the Scopus database using “artificialintelligence” and “prostate cancer” keywords. The selected studies were systematized using Scopusbibliometric tools and the VOSviewer software.Results.The number of publications in this research field has drastically increased since 2016, with mostresearch carried out in the United States, Canada, and the United Kingdom. They can be divided into threethematic clusters and three qualitative stages in the development of this research field in timeline aspect.Conclusions.Artificial intelligence algorithms are now being actively developed, playing a huge role inthe diagnosis of prostate cancer. Further development and improvement of artificial intelligence algorithmshave the potential to automate and standardize the diagnosis of prostate cancer.
  • Item
    Artificial Intelligence Approach in Prostate Cancer Diagnosis: Bibliometric Analysis
    (Івано-Франківський Національний медичний університет, 2022) Денисенко, Анастасія Петрівна; Денисенко, Анастасия Петровна; Denysenko, Anastasiia Petrivna; Савченко, Тарас Русланович; Савченко, Тарас Русланович; Savchenko, Taras Ruslanovych; Довбиш, Анатолій Степанович; Довбыш, Анатолий Степанович; Dovbysh, Anatolii Stepanovych; Романюк, Анатолій Миколайович; Романюк, Анатолий Николаевич; Romaniuk, Anatolii Mykolaiovych; Москаленко, Роман Андрійович; Москаленко, Роман Андреевич; Moskalenko, Roman Andriiovych
    Background. Prostate cancer is one of the most common male malignancies worldwide that ranks second in cancer-related mortality. Artificial intelligence can reduce subjectivity and improve the efficiency of prostate cancer diagnosis using fewer resources as compared to standard diagnostic scheme. This review aims to highlight the main concepts of prostate cancer diagnosis and artificial intelligence application and to determine achievements, current trends, and potential research directions in this field, using bibliometric analysis. Materials and Methods. The studies on the application of artificial intelligence in the morphological diagnosis of prostate cancer for the past 35 years were searched for in the Scopus database using “artificial intelligence” and “prostate cancer” keywords. The selected studies were systematized using Scopus bibliometric tools and the VOSviewer software. Results. The number of publications in this research field has drastically increased since 2016, with most research carried out in the United States, Canada, and the United Kingdom. They can be divided into three thematic clusters and three qualitative stages in the development of this research field in timeline aspect. Conclusions. Artificial intelligence algorithms are now being actively developed, playing a huge role in the diagnosis of prostate cancer. Further development and improvement of artificial intelligence algorithms have the potential to automate and standardize the diagnosis of prostate cancer.
  • Item
    Information-extreme data clustering of controlled techological processes
    (Publishin office of Sumy State University, 2009) Довбиш, Анатолій Степанович; Довбыш, Анатолий Степанович; Dovbysh, Anatolii Stepanovych; Шелехов, Ігор Володимирович; Шелехов, Игорь Владимирович; Shelekhov, Ihor Volodymyrovych