Видання зареєстровані авторами шляхом самоархівування
Permanent URI for this communityhttps://devessuir.sumdu.edu.ua/handle/123456789/1
Browse
3 results
Search Results
Item Application of Polydopamine Functionalized Zinc Oxide for Glucose Biosensor Design(MDPI, 2021) Fedorenko, V.; Damberga, D.; Grundsteins, K.; Ramanavicius, A.; Ramanavicius, S.; Coy, E.; Iatsunskyi, I.; Вітер, Роман Віталійович; Ветер, Роман Витальевич; Viter, Roman VitaliiovychZinc oxide (ZnO) nanostructures are widely used in optical sensors and biosensors. Functionalization of these nanostructures with polymers enables optical properties of ZnO to be tailored. Polydopamine (PDA) is a highly biocompatible polymer, which can be used as a versatile coating suitable for application in sensor and biosensor design. In this research, we have grown ZnO-based nanorods on the surface of ITO-modified glass-plated optically transparent electrodes (glass/ITO). Then the deposition of the PDA polymer layer on the surface of ZnO nanorods was performed from an aqueous PDA solution in such a way glass/ITO/ZnO-PDA structure was formed. The ZnO-PDA composite was characterized by SEM, TEM, and FTIR spectroscopy. Then glucose oxidase (GOx) was immobilized using crosslinking by glutaraldehyde on the surface of the ZnOPDA composite, and glass/ITO/ZnO-PDA/GOx-based biosensing structure was designed. This structure was applied for the photo-electrochemical determination of glucose (Glc) in aqueous solutions. Photo-electrochemical determination of glucose by cyclic voltammetry and amperometry has been performed by glass/ITO/ZnO-PDA/GOx-based biosensor. Here reported modification/functionalization of ZnO nanorods with PDA enhances the photo-electrochemical performance of ZnO nanorods, which is well suited for the design of photo-electrochemical sensors and biosensors.Item Bioactivity Performance of Pure Mg after Plasma Electrolytic Oxidation in Silicate-Based Solutions(MDPI, 2021) Гусак, Євгенія Володимирівна; Гусак, Евгения Владимировна; Husak, Yevheniia Volodymyrivna; Michalska, J.; Олешко, Олександр Миколайович; Олешко, Александр Николаевич; Oleshko, Oleksandr Mykolaiovych; Корнiєнко, Вiкторiя Володимирiвна; Корниенко, Виктория Владимировна; Korniienko, Viktoriia Volodymyrivna; Grundsteins, K.; Дригваль, Богдан Олександрович; Дрыгваль, Богдан Александрович; Dryhval, Bohdan Oleksandrovych; Altundal, S.; Mishchenko, O.; Вітер, Роман Віталійович; Ветер, Роман Витальевич; Viter, Roman Vitaliiovych; Simka, W.The biodegradable metals, including magnesium (Mg), are a convenient alternative to permanent metals but fast uncontrolled corrosion limited wide clinical application. Formation of a barrier coating on Mg alloys could be a successful strategy for the production of a stable external layer that prevents fast corrosion. Our research was aimed to develop an Mg stable oxide coating using plasma electrolytic oxidation (PEO) in silicate-based solutions. 99.9% pure Mg alloy was anodized in electrolytes contained mixtures of sodium silicate and sodium fluoride, calcium hydroxide and sodium hydroxide. Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), contact angle (CA), Photoluminescence analysis and immersion tests were performed to assess structural and long-term corrosion properties of the new coating. Biocompatibility and antibacterial potential of the new coating were evaluated using U2OS cell culture and the grampositive Staphylococcus aureus (S. aureus, strain B 918). PEO provided the formation of a porous oxide layer with relatively high roughness. It was shown that Ca(OH)2 was a crucial compound for oxidation and surface modification of Mg implants, treated with the PEO method. The addition of Ca2+ ions resulted in more intense oxidation of the Mg surface and growth of the oxide layer with a higher active surface area. Cell culture experiments demonstrated appropriate cell adhesion to all investigated coatings with a significantly better proliferation rate for the samples treated in Ca(OH)2 - containing electrolyte. In contrast, NaOH-based electrolyte provided more relevant antibacterial effects but did not support cell proliferation. In conclusion, it should be noted that PEO of Mg alloy in silicate baths containing Ca(OH)2 provided the formation of stable biocompatible oxide coatings that could be used in the development of commercial degradable implantsItem Biocompatibility and Antibacterial Properties of ZnO-Incorporated Anodic Oxide Coatings on TiZrNb Alloy(MDPI, 2020) Олешко, Олександр Миколайович; Олешко, Александр Николаевич; Oleshko, Oleksandr Mykolaiovych; Гусак, Євгенія Володимирівна; Гусак, Евгения Владимировна; Husak, Yevheniia Volodymyrivna; Корнiєнко, Вiкторiя Володимирiвна; Корниенко, Виктория Владимировна; Korniienko, Viktoriia Volodymyrivna; Пшеничний, Роман Миколайович; Пшеничный, Роман Николаевич; Pshenychnyi, Roman Mykolaiovych; Варава, Юлія Валентинівна; Варава, Юлия Валентиновна; Varava, Yuliia Valentynivna; Калінкевич, Оксана Володимирівна; Калинкевич, Оксана Владимировна; Kalinkevych, Oksana Vladymyrovna; Pisarek, M.; Grundsteins, K.; Pogorielova, O.; Mishchenko, O.; Simka, W.; Вітер, Роман Віталійович; Ветер, Роман Витальевич; Viter, Roman Vitaliiovych; Погорєлов, Максим Володимирович; Погорелов, Максим Владимирович; Pohorielov, Maksym VolodymyrovychIn a present paper, we demonstrate novel approach to form ceramic coatings with incorporated ZnO nanoparticles (NPs) on low modulus TiZrNb alloy with enhanced biocompatibility and antibacterial parameters. Plasma Electrolytic Oxidation (PEO) was used to integrate ZnO nanoparticles (average size 12–27 nm), mixed with Ca(H2PO2)2 aqueous solution into low modulus TiZrNb alloy surface. The TiZrNb alloys with integrated ZnO NPs successfully showed higher surface porosity and contact angle. XPS investigations showed presence of Ca ions and absence of phosphate ions in the PEO modified layer, what explains higher values of contact angle. Cell culture experiment (U2OS type) confirmed that the surface of as formed oxide-ZnO NPs demonstrated hydrophobic properties, what can affect primary cell attachment. Further investigations showed that Ca ions in the PEO coating stimulated proliferative activity of attached cells, resulting in competitive adhesion between cells and bacteria in clinical situation. Thus, high contact angle and integrated ZnO NPs prevent bacterial adhesion and considerably enhance the antibacterial property of TiZrNb alloys. A new anodic oxide coating with ZnO NPs could be successfully used for modification of low modulus alloys to decrease post-implantation complications.