Видання зареєстровані авторами шляхом самоархівування

Permanent URI for this communityhttps://devessuir.sumdu.edu.ua/handle/123456789/1

Browse

Search Results

Now showing 1 - 4 of 4
  • Item
    Survival Analysis Methods for Assessing the Anti-Money Laundering System Effectiveness
    (Sofia Technical University, Sofia, Bulgaria, 2023) Кузьменко, Ольга Віталіївна; Кузьменко, Ольга Витальевна; Kuzmenko, Olha Vitaliivna; Крухмаль, Олена Валентинівна; Крухмаль, Елена Валентиновна; Krukhmal, Olena Valentynivna; Койбічук, Віталія Василівна; Койбичук, Виталия Васильевна; Koibichuk, Vitaliia Vasylivna; Гриценко, Костянтин Григорович; Гриценко, Константин Григорьевич; Hrytsenko, Kostiantyn Hryhorovych; Кушнерьов, Олександр Сергійович; Кушнерёв, Александр Сергеевич; Kushnerov, Oleksandr Serhiiovych; Гордієнко, Віта Павлівна; Гордиенко, Вита Павловна; Hordiienko, Vita Pavlivna; Pasemko, G.; Taran, O.; Smigunova, O.V.
    У статті зібрано та систематизовано статистичну інформацію для оцінки ефективності системи протидії відмиванню доходів 25 банків з 12 країн. Ефективність системи протидії відмиванню доходів оцінювалася на основі застосування методу аналізу виживання шляхом побудови таблиць виживання для банків, які потрапили під санкції, визначення ймовірності прийняття рішення про необхідність застосування санкцій до банків, множинних оцінок Каплана-Мейєра, формалізації функція миттєвого ризику рівня небезпеки. Ефективність системи протидії відмиванню грошей порівнюється на основі аналізу виживання в групах банків по всьому світу. Відповідні фактори вплинули на оцінку ефективності системи протидії відмиванню доходів, одержаних злочинним шляхом, на основі застосування методу головних компонентів шляхом побудови осипної діаграми та визначення факторних навантажень показників бази статистичних вхідних даних у дослідженні. Побудовано пропорційну інтенсивність регресійної моделі Кокса залежності ефективності системи протидії відмиванню коштів від незалежних факторів.
  • Item
    Predictive modeling of the outcomes of cyber sport matches using Data Mining technologies
    (Хмельницький національний університет, 2021) Кузьменко, Ольга Віталіївна; Кузьменко, Ольга Витальевна; Kuzmenko, Olha Vitaliivna; Гриценко, Костянтин Григорович; Гриценко, Константин Григорьевич; Hrytsenko, Kostiantyn Hryhorovych; Яровенко, Ганна Миколаївна; Яровенко, Анна Николаевна; Yarovenko, Hanna Mykolaivna; Кушнерьов, Олександр Сергійович; Кушнерёв, Александр Сергеевич; Kushnerov, Oleksandr Serhiiovych; Hrytsenko, A.K.
    Кіберспортивна галузь є високорозвиненою міждисциплінарною сферою, в якій широко використовуються технології машинного навчання та штучного інтелекту. В статті досліджено питання застосування технологій Data Mining з метою прогнозування результатів кіберспортивних матчів. Розглянута методика прогнозного моделювання. На основі кореляційного аналізу визначено вхідні змінні для прогнозування результатів матчів онлайн гри League of Legends. В пакеті SAS Enterprise Miner побудовано прогнозні моделі у вигляді дерева рішень, логістичної регресії та нейронної мережі. На основі аналізу показників якості прогнозних моделей обгрунтовано використання нейронної мережі в складі предиктора результатів кіберспортивних матчів. Метою даного предиктора є надання гравцям порад про те, яким чином змінити стратегію гри, в якій вони зазнають поразки.
  • Item
    An approach to managing innovation to protect financial sector against cybercrime
    (Czestochowa University of Technology, 2021) Кузьменко, Ольга Віталіївна; Кузьменко, Ольга Витальевна; Kuzmenko, Olha Vitaliivna; Kubálek, J.; Боженко, Вікторія Володимирівна; Боженко, Виктория Владимировна; Bozhenko, Viktoriia Volodymyrivna; Кушнерьов, Олександр Сергійович; Кушнерёв, Александр Сергеевич; Kushnerov, Oleksandr Serhiiovych; Vida, I.
    Ensuring the cybersecurity management is an ever-increasing challenge for the financial institutions and the national financial regulators. The main purpose of the research is to improve cybersecurity management through analyzing large data volumes of information which helps to identify potential cyber threats at an early stage. The factors of the rapid cybercrime growth via supervised learning models with associated learning (SVM) were identified and evaluated in the paper. The object of research is 21 EU countries. The paper presents the results of an empirical analysis, which showed that the cyber threats are caused by the growth of using online banking (0.49), improvement of internet user skills (0.42), expansion of activities online (0.41). The results of the research can be useful for financial institutions, national regulators and cybersecurity professionals.
  • Item
    Прогнозне моделювання результатів кіберспортивних матчів із використанням технологій data mining
    (Комп’ютерні системи та інформаційні технології, 2021) Кузьменко, Ольга Віталіївна; Кузьменко, Ольга Витальевна; Kuzmenko, Olha Vitaliivna; Гриценко, Костянтин Григорович; Гриценко, Константин Григорьевич; Hrytsenko, Kostiantyn Hryhorovych; Яровенко, Ганна Миколаївна; Яровенко, Анна Николаевна; Yarovenko, Hanna Mykolaivna; Кушнерьов, Олександр Сергійович; Кушнерёв, Александр Сергеевич; Kushnerov, Oleksandr Serhiiovych; Гриценко, А
    Останнім часом в Україні активно розвивається індустрія кіберспорту. Кіберспорт сприяє розвитку розумових здібностей у використанні інформаційних технологій. Кіберспорт – це змагання з комп’ютерних ігор. Вона охоплює велику кількість населення та широкий спектр професій. Індустрія кіберспорту включає не лише гравців, а й розробників ігор, менеджерів команд, організаторів турнірів, маркетологів, стрімінгових компаній, численних спонсорів та державних установ. У багатьох країнах світу кіберспорт має державну підтримку, змагання високого рівня та відповідні освітні програми. У 2020 році кіберспорт був визнаний офіційним видом спорту в Україні, а в серпні 2021 року Україна вперше прийняла Чемпіонат Європи з кіберспорту. Особливо слід відзначити роль штучного інтелекту та технологій машинного навчання у розробці комп’ютерних онлайн-ігор. Кіберспортивна галузь є високорозвиненою міждисциплінарною сферою, в якій широко використовуються технології машинного навчання та штучного інтелекту. В статті досліджено питання застосування технологій Data Mining з метою прогнозування результатів кіберспортивних матчів. Розглянута методика прогнозного моделювання. На основі кореляційного аналізу визначено вхідні змінні для прогнозування результатів матчів онлайн гри League of Legends. В пакеті SAS Enterprise Miner побудовано прогнозні моделі у вигляді дерева рішень, логістичної регресії та нейронної мережі. На основі аналізу показників якості прогнозних моделей обгрунтовано використання нейронної мережі в складі предиктора результатів кіберспортивних матчів. Метою даного предиктора є надання гравцям порад про те, яким чином змінити стратегію гри, в якій вони зазнають поразки.