Видання зареєстровані авторами шляхом самоархівування

Permanent URI for this communityhttps://devessuir.sumdu.edu.ua/handle/123456789/1

Browse

Search Results

Now showing 1 - 5 of 5
  • Item
    Розробка нейромережевої моделі для предиктивного аналізу ймовірності реалізації кіберзагроз на основі класифікатора загроз
    (ПП «Новий Світ-2000»., 2025) Стеців, О.С.; Євсеєв, С.П.; Кушнерьов, Олександр Сергійович; Kushnerov, Oleksandr Serhiiovych
    У дослідженні представлено розробку та валідацію нейромережевої моделі для предиктивного аналізу ймовірності реалізації кіберзагроз. Через неефективність традиційних реактивних методів захисту, було запропоновано проактивний підхід на основі машинного навчання. Початковий набір даних, що складався з 200 записів, було розширено до 20 200 за допомогою аугментації для подолання проблеми обмеженого обсягу та дисбалансу класів. Створена архітектура багатошарового перцептрона (MLP) з використанням механізму зважених втрат та ранньої зупинки продемонструвала високу ефективність, досягнувши точності 94.94% на тестових даних. Модель також підтвердила свою узагальнюючу здатність на реальних прикладах, що не входили до навчальної вибірки, довівши її практичну цінність для створення систем проактивного управління кіберризиками.
  • Item
    Класифікація кіберзагроз на основі аналізу текстових описів з використанням методів обробки природної мови
    (ПП «Новий Світ-2000», 2025) Шаламай, Д.С.; Євсеєв, С.П.; Кушнерьов, Олександр Сергійович; Kushnerov, Oleksandr Serhiiovych
    Дослідження присвячене розробці системи для автоматичної класифікації кіберзагроз на основі текстових описів, наданих у довільній формі. Через недостатню оперативність традиційних підходів до документування загроз , була створена система, що використовує методи обробки природної мови (NLP) та машинного навчання. Початковий набір з 220 загроз банківського сектору було розширено до 1078 описів за допомогою технік аугментації даних, зокрема парафразування. Розроблений конвеєр обробки даних включає очищення та лематизацію тексту за допомогою бібліотеки Stanza , перетворення тексту у вектори TF-IDF та багатовихідну класифікацію з використанням RandomForestClassifier. Створена система здатна категоризувати загрози за вісьмома параметрами і спершу перевіряє схожість введеного опису з існуючими в базі за допомогою косинусної подібності, перш ніж задіяти модель машинного навчання.
  • Item
    Використання машинного навчання для створення текстової інформації на основі аналізу фінансових звітів компаній
    (Сумський державний університет, 2023) Півень, А.В.; Кушнерьов, Олександр Сергійович; Kushnerov, Oleksandr Serhiiovych; Койбічук, Віталія Василівна; Koibichuk, Vitaliia Vasylivna
    Доповідь розглядає використання машинного навчання та глибинного навчання для аналізу фінансових звітів компаній. Застосування алгоритмів машинного навчання у фінансовому секторі включає автоматизацію аналізу даних, покращення якості аналізу, генерацію текстових звітів та прогнозування фінансових тенденцій. Розроблений модуль дозволяє швидко та ефективно аналізувати фінансові звіти, забезпечуючи конкурентні переваги компаніям.
  • Item
    Роль та ефективність використання нейронної мережі у вдосконаленні аналізу, класифікації та управління відгуками на товари
    (Сумський державний університет, 2023) Кільдей, А.Д.; Кушнерьов, Олександр Сергійович; Kushnerov, Oleksandr Serhiiovych; Койбічук, Віталія Василівна; Koibichuk, Vitaliia Vasylivna
    У сучасному інформаційному суспільстві важливо розвивати ефективні методи аналізу та класифікації текстової інформації, зокрема в контексті відгуків на товари. Ця робота розглядає роль та ефективність використання нейронних мереж у вдосконаленні аналізу, класифікації та управління відгуками. Зокрема, досліджуються методи обробки природної мови, машинного та глибокого навчання для створення моделей класифікації відгуків на товари. Робота також вказує на важливість збору чистих та репрезентативних даних, а також на етапи підготовки текстових даних для досягнення високої точності та ефективності моделей.
  • Item
    An approach to managing innovation to protect financial sector against cybercrime
    (Czestochowa University of Technology, 2021) Кузьменко, Ольга Віталіївна; Кузьменко, Ольга Витальевна; Kuzmenko, Olha Vitaliivna; Kubálek, J.; Боженко, Вікторія Володимирівна; Боженко, Виктория Владимировна; Bozhenko, Viktoriia Volodymyrivna; Кушнерьов, Олександр Сергійович; Кушнерёв, Александр Сергеевич; Kushnerov, Oleksandr Serhiiovych; Vida, I.
    Ensuring the cybersecurity management is an ever-increasing challenge for the financial institutions and the national financial regulators. The main purpose of the research is to improve cybersecurity management through analyzing large data volumes of information which helps to identify potential cyber threats at an early stage. The factors of the rapid cybercrime growth via supervised learning models with associated learning (SVM) were identified and evaluated in the paper. The object of research is 21 EU countries. The paper presents the results of an empirical analysis, which showed that the cyber threats are caused by the growth of using online banking (0.49), improvement of internet user skills (0.42), expansion of activities online (0.41). The results of the research can be useful for financial institutions, national regulators and cybersecurity professionals.