Видання зареєстровані авторами шляхом самоархівування
Permanent URI for this communityhttps://devessuir.sumdu.edu.ua/handle/123456789/1
Browse
2 results
Search Results
Item Defining patterns in the influence exerted by the interelated biochemical corrosion on concrete building structures under the conditions of a chemical enterprise(ПП «ТЕХНОЛОГІЧНИЙ ЦЕНТР», 2021) Shkromada, О.; Ivchenko, V.; Chivanov, V.; Tsyhanenko, L.; Tsyhanenko, H.; Moskalenko, V.; Kyrchata, І.; Shersheniuk, O.; Ліцман, Юлія Володимирівна; Litsman, Yuliia VolodymyrivnaThe effect of microbial and chemical corrosion on concrete structures operated in the conditions of chemical enterprises has been established that makes it possible to reliably predict the timing of their decommissioning in order to prevent industrial disasters. Even though the construction complies with all building codes, concrete structures eventually undergo chemical and biological corrosion. The innovation proposed in this study implies investigating the depth and degree of damage to concrete at the microscopic level by the method of raster electron microscopy. In addition, the TPD-MS method has been suggested for determining the quantitative and qualitative state of the carbonate components of concrete and sulfur compounds. This study has found that in concrete samples from the titanium dioxide production plant, the amount of carbon dioxide release is twice less than in control samples at t=600 °C while the level of sulfur dioxide, on the contrary, increases. This is due to the ability of thionic bacteria to accumulate sulfate acid that destroys the cementing component in concrete. The reported results confirm the impact of products of the activity of Acidithiobacillus thiooxidans microorganisms on corrosion processes in concrete. In addition, when using the TPD-MS method, it was established in the storage room of the finished product that heating the control sample of concrete leads to a release of the significant amount of СО2 at t=580–600 °C. However, the experimental samples of concrete are almost lacking carbon compounds because the acid metabolites of microfungi interfere with its formation. Microscopic and REM studies revealed the localization of Acidithiobacillus thiooxidans and Aspergillus fumigatus in concrete. This study has established patterns related to the mechanism that forms chemical compounds in concrete and the metabolism of microorganisms.Item Detection of the synergetic influence of chemical and microbiological factors on the properties of concrete constructions at chemical plants during the long-term service(Scientific Route OÜ, 2022) Shkromada, O.; Піхтірьова, Аліна Володимирівна; Пихтирева, Алина Владимировна; Pikhtirova, Alina Volodymyrivna; Chivanov, V.; Ivchenko, V.; Sribniak, N.; Ліцман, Юлія Володимирівна; Лицман, Юлия Владимировна; Litsman, Yuliia VolodymyrivnaLong-term operation of reinforced concrete structures in the conditions of chemical enterprises has a powerful negative impact on the physical and chemical properties of concrete, which leads to its destruction. The aim of this research is to determine the effect of biological and chemical corrosion on concrete structures in the workshop for the production of titanium dioxide by the sulphate method and the storage of finished products. In particular, chemical production for the synthesis of titanium dioxide by the sulfate method causes the rapid course of chemical (acid and sulfate) and microbiological (thionic bacteria and microscopic fungi) corrosion processes. These corrosion processes reinforce each other according to a synergistic principle. As a result, tem-perature-programmed desorption mass spectrometry (TPD MS) and scanning electron microscopy have experimentally proven the presence and spatial localization of colonies of thionic bacteria and microscopic fungi in concrete structures. Correlations between the intensity of biochemical corrosion and the depth of damage to the microstructures of concrete structures have been established. Moreover, a change in the chemical composition of concrete in the workshop for the production of titanium dioxide (increased SO2content and reduced CO2) and the formation of gypsum crystals (CaSO4⋅2H2O) as a result of the dissimilation of microorganisms was established. Also, in the storage room for finished products, calcium citrate crystals and a violation of the formation of calcium carbonate are formed in the surface layers of concrete. In addition, the results of the study can be used to develop antimicrobial and anticorrosive protective agents to stop the biochemical corrosion of concrete in a chemical plant.