Видання зареєстровані авторами шляхом самоархівування
Permanent URI for this communityhttps://devessuir.sumdu.edu.ua/handle/123456789/1
Browse
2 results
Search Results
Item Fabrication and Characterization of Electrospun Chitosan/Polylactic Acid (CH/PLA) Nanofiber Scaffolds for Biomedical Application(MDPI, 2023) Самохін, Євген Олександрович; Samokhin, Yevhen Oleksandrovych; Варава, Юлія Валентинівна; Varava, Yuliia Valentynivna; Дєдкова, Катерина Андріївна; Diedkova, Kateryna Andriivna; Yanko, I.; Гусак, Євгенія Володимирівна; Husak, Yevheniia Volodymyrivna; Radwan-Pragłowska, J.; Погорєлова, Оксана Сергіївна; Pohorielova, Oksana Serhiivna; Janus, Ł.; Погорєлов, Максим Володимирович; Pohorielov, Maksym Volodymyrovych; Корнiєнко, Вiкторiя Володимирiвна; Korniienko, Viktoriia VolodymyrivnaThe present study demonstrates a strategy for preparing porous composite fibrous materials with superior biocompatibility and antibacterial performance. The findings reveal that the incorporation of PEG into the spinning solutions significantly influences the fiber diameters, morphology, and porous area fraction. The addition of a hydrophilic homopolymer, PEG, into the Ch/PLA spinning solution enhances the hydrophilicity of the resulting materials. The hybrid fibrous materials, comprising Ch modified with PLA and PEG as a co-solvent, along with post-treatment to improve water stability, exhibit a slower rate of degradation (stable, moderate weight loss over 16 weeks) and reduced hydrophobicity (lower contact angle, reaching 21.95 ± 2.17°), rendering them promising for biomedical applications. The antibacterial activity of the membranes is evaluated against Staphylococcus aureus and Escherichia coli, with PEG-containing samples showing a twofold increase in bacterial reduction rate. In vitro cell culture studies demonstrated that PEG-containing materials promote uniform cell attachment, comparable to PEG-free nanofibers. The comprehensive evaluation of these novel materials, which exhibit improved physical, chemical, and biological properties, highlights their potential for biomedical applications in tissue engineering and regenerative medicine.Item Hemostatic and Tissue Regeneration Performance of Novel Electrospun Chitosan-Based Materials(MDPI, 2021) Дейнека, Володимир Миколайович; Дейнека, Владимир Николаевич; Deineka, Volodymyr Mykolaiovych; Sulaieva, O.; Пернаков, Микола Станіславович; Пернаков, Николай Станиславович; Pernakov, Mykola Stanislavovych; Корнiєнко, Вiкторiя Володимирiвна; Корниенко, Виктория Владимировна; Korniienko, Viktoriia Volodymyrivna; Гусак, Євгенія Володимирівна; Гусак, Евгения Владимировна; Husak, Yevheniia Volodymyrivna; Яновська, Ганна Олександрівна; Яновская, Анна Александровна; Yanovska, Hanna Oleksandrivna; Юсупова, Азіза Фарходівна; Юсупова, Азиза Фархадовна; Yusupova, Aziza Farkhodivna; Ткаченко, Юлія Анатоліївна; Ткаченко, Юлия Анатольевна; Tkachenko, Yuliia Anatoliivna; Kalinkevich, O.; Zlatska, A.; Погорєлов, Максим Володимирович; Погорелов, Максим Владимирович; Pohorielov, Maksym VolodymyrovychThe application of chitosan (Ch) as a promising biopolymer with hemostatic properties and high biocompatibility is limited due to its prolonged degradation time, which, in turn, slows the repair process. In the present research, we aimed to develop new technologies to reduce the biodegradation time of Ch-based materials for hemostatic application. This study was undertaken to assess the biocompatibility and hemostatic and tissue-regeneration performance of Ch-PEOcopolymer prepared by electrospinning technique. Chitosan electrospinning membranes (ChEsM) were made from Ch and polyethylene oxide (PEO) powders for rich high-porous material with sufficient hemostatic parameters. The structure, porosity, density, antibacterial properties, in vitro degradation and biocompatibility of ChEsM were evaluated and compared to the conventional Ch sponge (ChSp). In addition, the hemostatic and bioactive performance of both materials were examined in vivo, using the liver-bleeding model in rats. A penetrating punch biopsy of the left liver lobe was performed to simulate bleeding from a non-compressible irregular wound. Appropriately shaped ChSp or ChEsM were applied to tissue lesions. Electrospinning allows us to produce high-porous membranes with relevant ChSp degradation and swelling properties. Both materials demonstrated high biocompatibility and hemostatic effectiveness in vitro. However, the antibacterial properties of ChEsM were not as good when compared to the ChSp. In vivo studies confirmed superior ChEsM biocompatibility and sufficient hemostatic performance, with tight interplay with host cells and tissues. The in vivo model showed a higher biodegradation rate of ChEsM and advanced liver repair.