Видання зареєстровані авторами шляхом самоархівування
Permanent URI for this communityhttps://devessuir.sumdu.edu.ua/handle/123456789/1
Browse
16 results
Search Results
Item Investigation of the Effect of 3D Structure Geometry of WE43 on Corrosion Activity in PBS(Sumy State University, 2025) Nazarenko, D.; Однодворець, Лариса Валентинівна; Odnodvorets, Larysa Valentynivna; Drozdenko, D.; Dobroň, P.; Minárik, P.; Alomar, Z.; D'Elia, F.; Kytýř, D.; Koudelka, P.Magnesium alloy WE43 is considered one of the most promising materials for biomedical implants due to its rare combination of low density, biocompatibility, favorable mechanical properties, and biodegradability [1]. However, its practical application remains limited by high corrosion rates in physiological environments. Therefore, the investigation of its corrosion resistance, especially in the context of modern manufacturing technologies, is of high relevance [2].Item Effects of the sources of calcium and phosphorus on the structural and functional properties of ceramic coatings on titanium dental implants produced by plasma electrolytic oxidation(Elsevier, 2021) Кириленко, Сергій Дмитрович; Kyrylenko, Serhii Dmytrovych; Warchoł, F.; Олешко, Олександр Миколайович; Oleshko, Oleksandr Mykolaiovych; Гусак, Євгенія Володимирівна; Husak, Yevheniia Volodymyrivna; Kazek-Kęsik, A.; Корнiєнко, Вiкторiя Володимирiвна; Korniienko, Viktoriia Volodymyrivna; Дейнека, Володимир Миколайович; Deineka, Volodymyr Mykolaiovych; Sowa, M.; Maciej, A.; Michalska, J.; Jakóbik-Kolon, A.; Matuła, I.; Basiaga, M.; Голубнича, Вікторія Миколаївна; Holubnycha, Viktoriia Mykolaivna; Stolarczyk, A.; Pisarek, M.; Mishchenko, O.; Погорєлов, Максим Володимирович; Pohorielov, Maksym Volodymyrovych; Simka, W.Plasma Electrolytic Oxidation (PEO) is as a promising technique to modify metal surfaces by application of oxide ceramic coatings with appropriate physical, chemical and biological characteristics. Therefore, objective of this research was to find the simplest settings, yet able to produce relevant bioactive implant surfaces layers on Ti implants by means of PEO. We show that an electrolyte containing potassium dihydrogen phosphate as a source of P and either calcium hydroxide or calcium formate as a source of Ca in combination with a chelating agent, ethylenediamine tetraacetic acid (EDTA), is suitable for PEO to deliver coatings with desired properties. We determined surface morphology, roughness, wettability, chemical and phase composition of titanium after the PEO process. To investigate biocompatibility and bacterial properties of the PEO oxide coatings we used microbial and cell culture tests. The electrolyte based on Ca(OH)2 and EDTA promotes active crystallization of apatites after PEO processing of the Ti implants. The PEO layers can increase electrochemical corrosion resistance. The PEO can be potentially used for development of bioactive surfaces with increased support of eukaryotic cells while inhibiting attachment and growth of bacteria without use of antibacterial agents.Item Hemostatic performance and biocompatibility of chitosan-based agents in experimental parenchymal bleeding(Elsevier, 2021) Дейнека, Володимир Миколайович; Deineka, Volodymyr Mykolaiovych; Sulaieva, O.; Пернаков, Микола Станіславович; Pernakov, Mykola Stanislavovych; Radwan-Pragłowska, J.; Janus, L.; Корнiєнко, Вiкторiя Володимирiвна; Korniienko, Viktoriia Volodymyrivna; Гусак, Євгенія Володимирівна; Husak, Yevheniia Volodymyrivna; Яновська, Ганна Олександрівна; Yanovska, Hanna Oleksandrivna; Любчак, Ірина Володимирівна; Liubchak, Iryna Volodymyrivna; Юсупова, Азіза Фарходівна; Yusupova, Aziza Farkhodivna; Piątkowski, M.; Zlatska, A.; Погорєлов, Максим Володимирович; Pohorielov, Maksym VolodymyrovychThe uncontrolled parenchymatic bleeding is still a cause of serious complications in surgery and require new effective hemostatic materials. In recent years, numerous chitosan-based materials have been intensively studied for parenchymatic bleeding control but still require to increased safety and effectiveness. The current research is devoted to new hemostatic materials made of natural polymer (chitosan) developed using electrospinning and microwave-assisted methods. Hemostatic performance, biocompatibility, degradation, and in-vivo effectiveness were studied to assess functional properties of new materials. Chitosan-based agents demonstrated considerable hemostatic performance, moderate biodegradation pace and high biocompatibility in vitro. Using the electrospinning-made chitosan-copolymer significantly improved in vivo biocompatibility and degradation of Chitosan-based agents that provides opportunities for its implementation for visceral bleeding management. Chitosan aerogel could be effectively applied in hemostatic patch development due to high antibacterial activity but it is not recommended for visceral application due to moderate inflammatory effect and slow degradation.Item Biological behaviour of chitosan electrospun nanofibrous membranes after different neutralisation methods(Polish Chitin Society, 2022) Корнієнко, Вікторія Володимирівна; Korniienko, Viktoriia Volodymyrivna; Гусак, Євгенія Володимирівна; Husak, Yevheniia Volodymyrivna; Яновська, Ганна Олександрівна; Yanovska, Hanna Oleksandrivna; Altundal, S.; Дєдкова, Катерина Андріївна; Diedkova, Kateryna Andriivna; Самохін, Євген Олександрович; Samokhin, Yevhen Oleksandrovych; Варава, Юлія Валентинівна; Varava, Yuliia Valentynivna; Голубнича, Вікторія Миколаївна; Holubnycha, Viktoriia Mykolaivna; Viter, R.; Погорєлов, Максим Володимирович; Pohorielov, Maksym VolodymyrovychChitosan electrospun nanofibres were synthesised in two different trifluoroacetic acid (TFA)/dichloromethane (DCM) solvent ratios and then neutralised in aqueous and ethanol sodium-based solutions (NaOH and Na2CO3) to produce insoluble materials with enhanced biological properties for regenerative and tissue engineering applications. Structural, electronic, and optical properties and the swelling capacity of the prepared nanofibre membrane were studied by scanning electron microscopy, Fourier-transform infrared spectroscopy, and photoluminescence. Cell viability (with the U2OS cell line) and antibacterial properties (against Staphylococcus aureus and Escherichia coli) assays were used to assess the biomedical potential of the neutralised chitosan nanofibrous membranes. A 7:3 TFA/DCM ratio allows for an elaborate nanofibrous membrane with a more uniform fibre size distribution. Neutralisation in aqueous NaOH only maintains a partial fibrous structure. At the same time, neutralisation in NaOH ethanol-water maintains the structure during 1 month of degradation in phosphate-buffered saline and distilled water. All membranes demonstrate high biocompatibility, but neutralisation in ethanol solutions affects cell proliferation on materials made with 9:1 TFA/DCM. The prepared nanofibrous mats could constrain the growth of both gram-positive and gram-negative microorganisms, but 7:3 TFA/DCM membranes inhibited bacterial growth more efficiently. Based on structural, degradation, and biological properties, 7:3 TFA/DCM chitosan nanofibrous membranes neutralised by 70% ethanol/30% aqueous NaOH exhibit potential for biomedical and tissue engineering applications.Item Study of the cytotoxic effect of orthopedic materials based on ethylene-vinyl acetate on cell cultures(MM Publishing, 2022) Zaloha, R.; Dyadyura, K.; Behun, M.; Залога, Вільям Олександрович; Zaloha, Viliam Oleksandrovych; Pandova, I.Measuring the potentially adverse effects of materials on the human body is vital and essential for their use, including medical applications. One of the properties that need to be known is the cytotoxic effect of the materials to avoid local and systemic adverse effects. It is very important that scientists and medical professionals are aware of the effects of materials on the human body. This study also summarizes the data on the morphology, chemical composition, and the effect of ethylene-vinyl acetate (EVA) orthopaedic materials on cytotoxicity. Qualitative and quantitative cytotoxicity analysis was performed using fluorescent microscopy and metabolic cell toxicity assay. The results of the studies demonstrated low in vitro cytotoxicity and high biocompatibility. These results may serve as the basis for a toxicological study of orthopaedic materials to prevent severe side effects.Item Model for assessing the safety index of constructions based on hydroxyapatite(MM Science Journall, 2022) Chernobrovchenko, V.; Panda, A.; Dyadyura, K.; Висоцький, Ігор Юрійович; Vysotskyi, Ihor Yuriiovych; Pandova, I.Synthetic hydroxyapatite is used in biomedical engineering for its desirable mechanical properties. But not all scaffolds are biocompatible in use. The safety of implants depends on the competence of medical personnel, manufacturing technology, as well as biological, mechanical and other properties. Although there are regulatory standards for the safety of biomaterials, the assessment of their biocompatibility is a difficult task, which is associated with the properties of spacesuits, the duration of contact with tissues. The article proposes a method for assessing the safety of implants depending on various factors that form their biocompatibility.Item Fabrication and Characterization of Electrospun Chitosan/Polylactic Acid (CH/PLA) Nanofiber Scaffolds for Biomedical Application(MDPI, 2023) Самохін, Євген Олександрович; Samokhin, Yevhen Oleksandrovych; Варава, Юлія Валентинівна; Varava, Yuliia Valentynivna; Дєдкова, Катерина Андріївна; Diedkova, Kateryna Andriivna; Yanko, I.; Гусак, Євгенія Володимирівна; Husak, Yevheniia Volodymyrivna; Radwan-Pragłowska, J.; Погорєлова, Оксана Сергіївна; Pohorielova, Oksana Serhiivna; Janus, Ł.; Погорєлов, Максим Володимирович; Pohorielov, Maksym Volodymyrovych; Корнiєнко, Вiкторiя Володимирiвна; Korniienko, Viktoriia VolodymyrivnaThe present study demonstrates a strategy for preparing porous composite fibrous materials with superior biocompatibility and antibacterial performance. The findings reveal that the incorporation of PEG into the spinning solutions significantly influences the fiber diameters, morphology, and porous area fraction. The addition of a hydrophilic homopolymer, PEG, into the Ch/PLA spinning solution enhances the hydrophilicity of the resulting materials. The hybrid fibrous materials, comprising Ch modified with PLA and PEG as a co-solvent, along with post-treatment to improve water stability, exhibit a slower rate of degradation (stable, moderate weight loss over 16 weeks) and reduced hydrophobicity (lower contact angle, reaching 21.95 ± 2.17°), rendering them promising for biomedical applications. The antibacterial activity of the membranes is evaluated against Staphylococcus aureus and Escherichia coli, with PEG-containing samples showing a twofold increase in bacterial reduction rate. In vitro cell culture studies demonstrated that PEG-containing materials promote uniform cell attachment, comparable to PEG-free nanofibers. The comprehensive evaluation of these novel materials, which exhibit improved physical, chemical, and biological properties, highlights their potential for biomedical applications in tissue engineering and regenerative medicine.Item Наношаблони з полікапролактону та максену у вигляді волокон для використання в інженерії тканин(Сумський державний університет, 2023) Пащенко, А.А.У кваліфікаційній роботі було досліджено фізико-механічні властивості полікапролактону та максену, а також їхня біосумісність. Проведений аналіз ефективності застосування наношаблонів з цих матеріалів в інженерії тканин.Item Дослідження біосумісних кальцієво-фосфатних покриттів на основі гідроксиапатиту для виготовлення медичних імплантатів(Сумський державний університет, 2021) Балинський, М.В.В роботі було досліджено сформовані методом високочастотного магнетронного розпилення мішені із гідроксиапатиту (ГА) кальцієво-фосфатні покриття і виконаний докладний електронно-мікроскопічний та рентгеноструктурний аналіз мікроструктури отриманих покриттів. Проведено комплексний аналіз властивостей кальцієво-фосфатних покриттів. Показано, що відношення кальцію до фосфору в покритті (Ca/P), а також структура покриттів визначається потужністю ВЧ-розряду, напругою зміщення на підкладці, атмосферою робочого газу і часом напилення. Виявлено основні параметри напилення, що дозволяють змінювати співвідношення Ca/P і структуру покриттів від аморфних до кристалічних. Методом атомно силової мікроскопії досліджено морфологію сформованих покриттів, проведено вимірювання середнього розміру зерен покриттів. Хімічний склад покриттів представлений основними елементами мішеней, що розпилюються: кальцієм, фосфором, киснем, при цьому стехіометричне відношення Са/Р у покриттях відповідає таким, як у мішенях. Було встановлено, що покриття є біосумісними, нетоксичними, на них відзначається покращена адгезія та механічні властивості.Item Bioactivity Performance of Pure Mg after Plasma Electrolytic Oxidation in Silicate-Based Solutions(MDPI, 2021) Гусак, Євгенія Володимирівна; Гусак, Евгения Владимировна; Husak, Yevheniia Volodymyrivna; Michalska, J.; Олешко, Олександр Миколайович; Олешко, Александр Николаевич; Oleshko, Oleksandr Mykolaiovych; Корнiєнко, Вiкторiя Володимирiвна; Корниенко, Виктория Владимировна; Korniienko, Viktoriia Volodymyrivna; Grundsteins, K.; Дригваль, Богдан Олександрович; Дрыгваль, Богдан Александрович; Dryhval, Bohdan Oleksandrovych; Altundal, S.; Mishchenko, O.; Вітер, Роман Віталійович; Ветер, Роман Витальевич; Viter, Roman Vitaliiovych; Simka, W.The biodegradable metals, including magnesium (Mg), are a convenient alternative to permanent metals but fast uncontrolled corrosion limited wide clinical application. Formation of a barrier coating on Mg alloys could be a successful strategy for the production of a stable external layer that prevents fast corrosion. Our research was aimed to develop an Mg stable oxide coating using plasma electrolytic oxidation (PEO) in silicate-based solutions. 99.9% pure Mg alloy was anodized in electrolytes contained mixtures of sodium silicate and sodium fluoride, calcium hydroxide and sodium hydroxide. Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), contact angle (CA), Photoluminescence analysis and immersion tests were performed to assess structural and long-term corrosion properties of the new coating. Biocompatibility and antibacterial potential of the new coating were evaluated using U2OS cell culture and the grampositive Staphylococcus aureus (S. aureus, strain B 918). PEO provided the formation of a porous oxide layer with relatively high roughness. It was shown that Ca(OH)2 was a crucial compound for oxidation and surface modification of Mg implants, treated with the PEO method. The addition of Ca2+ ions resulted in more intense oxidation of the Mg surface and growth of the oxide layer with a higher active surface area. Cell culture experiments demonstrated appropriate cell adhesion to all investigated coatings with a significantly better proliferation rate for the samples treated in Ca(OH)2 - containing electrolyte. In contrast, NaOH-based electrolyte provided more relevant antibacterial effects but did not support cell proliferation. In conclusion, it should be noted that PEO of Mg alloy in silicate baths containing Ca(OH)2 provided the formation of stable biocompatible oxide coatings that could be used in the development of commercial degradable implants